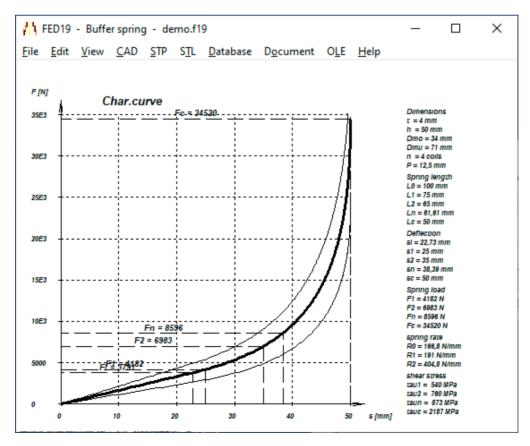

HEXAGON Newsletter 192

by Fritz Ruoss

FED19: New software for buffer spring design


Conical helical compression springs made of spring strip are referred to as "buffer springs". The calculation is similar to FED5 for conical helical compression springs made from round spring wire. In the "pre-design" of FED19 you can enter a mean spring force Fm and a mean spring deflection sm. Half the spring length is assumed to be the spring deflection sm (sm = L0/2 = Lm).

In the "recalculation" you can enter the dimensions of the spring (strip thickness, strip width, coil diameter at top/bottom, spring length, number of coils. For 2 spring lengths L1 and L2, FED19 calculates the spring forces F1 and F2.

nput	Cutput			Error Messages
t 🛃 🛛 mm	F1	4182	N	Warning: tauc>tauperm! S=0,40
h 50 mm	F2	6983	N	Warning: t > DMAX (3)
Dmo 34 mm	R1	191	N/mm	
Dmu 71 mm	R2	404,8	N/mm	
L0 100 mm	tau 1	539,9	MPa	
n(if) 4	tau 2	759,8	MPa	
L1 75 mm	tau h	220,0	MPa	
L2 65 mm	R0	166,8	N/mm	
T 20 °C	tau c	2187	MPa	
o/Pu 1	tau z	873,4	MPa	
	Lc	50	mm	

It is also possible to increase or decrease the coil pitch, defined by the pitch ratio Po/Pu. Buffer springs are subject to torsion, the coils twist under load and collide with each other. If you enter a friction coefficient under "Calculation method", the spring characteristic is displayed with hysteresis.

//\ FED19 - Buffer spring - demo.f19 − □ ×									
<u>File Edit View CAD STP STL Database Document OLE Help</u>									
Drahtquerschnitt	Drahtquerschnitt W _t			l t			τπ	$\tau_{\max} = \frac{F*Dm}{2*W_{t}}$	
d	$\frac{\pi}{16} * d^3$	$\frac{\pi}{32}$ *	`-+d* —			d ⁴)m ³ *n		8πDm*F π∗d ³	
h=20 br=2b	<u>π</u> * a * b ²	$\pi \frac{a^3 \cdot b^3}{a^2 + b^2}$		$\frac{4*G*a^3*b^3}{Dm^4*n*(a^2+b^2)}$			π*F π*b ² *a		
	0,208 ¥ o ³	08 * 0 ³ 0,141 * 0 ⁴		0,18+6+0 ⁴ Dm ³ +n			2,4∗Dm∗F σ ³		
B n	c ₂ + h + b ²	2 + h + b ² c ₁ + h		* h * b ³		4*G*c1*h*b ³ π*Dm ³ *n		Dm*F 2*c ₂ *h*b ²	
	n=h/b 1	1,5	2		3	4	6	10	>> 10
ь F1-E-102	b c ₁ 0,141 1-E-102 c ₂ 0,208		0,229 0,246		0,263),267	0,281 0,282	0,298		0.333
	Spring rate for rectance		d she	ec	ır st	ress			FR 01/22

FED1+,2+,5,6,7,8,17,19: Auxiliary image with equations for spring calculation

Because the ratio of the spring band width to the band thickness of the buffer springs is usually greater than 10, the factors c1 and c2 for rectangular wire have been added in the c1/c2 table of the spring calculation help image. For very large strip width to strip thickness ratio, c1 and c2 are both 1/3.

FED1+, FED2+, FED3+: Export all spring data for database or Excel

Until now, you could save the current calculation as a dbf or xls file under "File\Export dbf, xls". Now there is also the possibility to save all calculations in a folder into one dbf or xls file.

DBFEDIT V3.1 HEXAGON 1998-2012 C:\temp\test2.dbf				- 0	×
File Edit					
H I F F I F I A K C	Search	Searc	n Next		
FILE		DATE	NR	NAME1	NAM A
AEND10.FED		2013/03/11	2098-4x32x120	Druckfeder	Schra
AEND25.FED		2009/04/03	2098-4x32x120	Druckfeder	
AEND25E.FED		2009/04/21	2098-4x32x120	Compression Spring	
AENDALT.FED		2013/03/11	123456789012345	Feder	Schra
AENDE.FED		2005/10/01	2098-4x32x120	Druckfeder	
AENDNEU.FED		2007/03/20	2098-4x32x120	Druckfeder	
AKTUELL.FED		2021/11/15	31227398-1-2	DENIPRO-Newspaper-Clip	
amsted.fed		2015/04/15		Molas externale	
ARTIKEL.FED		1988/12/11	1001.006	Druckfeder	
ATTUALE.FED		2017/07/18		molla	
ATUAL.FED		2016/11/23		mola	
<					>

Printer settings

Printout	×	
Printer Database	Win2PDF Apply Database	
Scale x 1 Scale y 1	Origin x 0 Origin y 0	
Printout O Portrait	shading Monochrome Color / grey-scale	Directories Graphics CAD Colour Printer Print
fit limits	Border line	Default printer
OK	Cancel Help	Origin × 0 <

When printing the screen content, the default printer was previously set. In rare cases, there were problems when the default printer was removed or not available. Therefore, in January 2022, the default was removed, so you had to choose a printer first. This has now been criticized by customers who wanted the old printer function back after an update. So you no longer have to select the printer first, and with a pdf printer you had to enter a new file name, whereas previously the file name of the calculation was taken over. So the change was undone. However, if problems occur with deleted printers, you can now uncheck "Default printer" under File\Settings\Printer, then you must first select a printer.

Tip: Protection against cyber attacks: "Internet on demand" instead of "Always online" The simplest and most effective protection against attacks from the network is disconnection from the network. This is practically impossible with smartphones, and it is also becoming increasingly difficult with Windows PCs. First you should set up Windows without a WLAN connection. "I do not have internet". With Windows 11 Home or S mode this is probably no longer possible, no Windows without a WLAN connection. After you have set up Windows without WLAN, you can still easily establish a WLAN connection afterwards. Uncheck "connect automatically". Then configure the Internet connection as a "timed connection". In this setting, the automatic updates of Windows and Co are also omitted. Then disconnect the WLAN connection and only go online if necessary.

If you have installed your HEXAGON software on drive C: (next to Windows) and the software no longer runs ("Invalid License Code"), then partitions on the hard disk have apparently been changed. If a Windows update is responsible for this, you can usually see it in the newly required key code request, because the C: hard drive appears to have shrunk by around 1 GB.

HEXAGON PRICE LIST 2022-05-01

Base price for single licences (perpetual)	EUR
DI1 Version 2.2 O-Ring Seal Software	
DXF-Manager Version 9.1	383
DXFPLOT V 3.2	123
FED1+ V31.4 Helical Compression Springs incl. spring database, animation, relax., 3D,	695
FED2+ V22.1 Helical Extension Springs incl. Spring database, animation, relaxation,	675
FED3+ V21.6 Helical Torsion Springs incl. prod.drawing, animation, 3D, rectang.wire,	600
FED4 Version 8.0 Disk Springs	430
FED5 Version 17.0 Conical Compression Springs	741
FED6 Version 18.0 Nonlinear Cylindrical Compression Springs	634
FED7 Version 15.0 Nonlinear Compression Springs	660
FED8 Version 7.4 Torsion Bar	317
FED9+ Version 7.0 Spiral Spring incl. production drawing, animation, Quick input	490
FED10 Version 4.5 Leaf Spring	500
FED11 Version 3.6 Spring Lock and Bushing	210
FED12 Version 2.7 Elastomer Compression Spring	220
FED13 Version 4.3 Wave Spring Washers	228
FED14 Version 2.7 Helical Wave Spring	395
FED15 Version 1.7 Leaf Spring (simple)	180
FED16 Version 1.4 Constant Force Spring	225
FED17 Version 2.1 Magazine Spring	725
FED19 Version 1.0 Buffer Spring	620
GEO1+ V7.5 Cross Section Calculation incl. profile database	294
GEO2 V3.3 Rotation Bodies	194
GEO3 V4.0 Hertzian Pressure	205
GEO4 V5.3 Cam Software	265
GEO5 V1.0 Geneva Drive Mechanism Software	218
GEO6 V1.0 Pinch Roll Overrunning Clutch Software	232
GEO7 V1.0 Internal Geneva Drive Mechanism Software	219
GR1 V2.2 Gear construction kit software	185
GR2 V1.2 Eccentric Gear software	550,-
HPGL-Manager Version 9.1	383
LG1 V7.0 Roll-Contact Bearings	296
LG2 V3.1 Hydrodynamic Plain Journal Bearings	460
SR1 V24.3 Bolted Joint Design	640
SR1+ V24.3 Bolted Joint Design incl. Flange calculation	750
TOL1 V12.0 Tolerance Analysis	506
TOL2 Version 4.1 Tolerance Analysis	495
TOLPASS V4.1 Library for ISO tolerances	107
TR1 V6.4 Girder Calculation	757
WL1+ V21.8 Shaft Calculation incl. Roll-contact Bearings	945
WN1 V12.4 Cylindrical and Conical Press Fits	485
WN2 V11.2 Involute Splines to DIN 5480	250
WN2+ V11.2 Involute Splines to DIN 5480 and non-standard involute splines	380
WN3 V 6.0 Parallel Key Joints to DIN 6885, ANSI B17.1, DIN 6892	245
WN4 V 6.1 Involute Splines to ANSI B 92.1	276
WN5 V 6.1 Involute Splines to ISO 4156 and ANSI B 92.2 M	255
WN6 V 4.1 Polygon Profiles P3G to DIN 32711	180
WN7 V 4.1 Polygon Profiles P4C to DIN 32712	175
WN8 V 2.6 Serration to DIN 5481	195
WN9 V 2.4 Spline Shafts to DIN ISO 14	170
WN10 V 4.4 Involute Splines to DIN 5482	260
WN11 V 2.0 Woodruff Key Joints	240
WN12 V 1.2 Face Splines	256
WN13 V 1.0 Polygon Profiles PnG	238
WN14 V 1.0 Polygon Profiles PnC	236
WNXE V 2.3 Involute Splines – dimensions, graphic, measure	375
WNXK V 2.2 Serration Splines – dimensions, graphic, measure	230
WST1 V 10.2 Material Database	235
ZAR1+ V 26.7 Spur and Helical Gears	1115

ZAR2 V8.2 Spiral Bevel Gears to Klingelnberg	792
ZAR3+ V10.4 Cylindrical Worm Gears	620
ZAR4 V6.3 Non-circular Spur Gears	1610
ZAR5 V12.4 Planetary Gears	1355
ZAR6 V4.3 Straight/Helical/Spiral Bevel Gears	585
ZAR7 V2.3 Plus Planetary Gears	1380
ZAR8 V1.9 Ravigneaux Planetary Gears	1950
ZAR9 V1.0 Cross-Helical Screw Gears	650
ZARXP V2.6 Involute Profiles - dimensions, graphic, measure	275
ZAR1W V2.6 Gear Wheel Dimensions, tolerances, measure	450
ZM1.V3.0 Chain Gear Design	326
ZM2.V1.0 Pin Rack Drive Design	320
ZM3.V1.0 Synchronous Belt Drive Design	224

PACKAGES	EUR
HEXAGON Mechanical Engineering Package (TOL1, ZAR1+, ZAR2, ZAR3+, ZAR5, ZAR6, WL1+, WN1,	
WN2+, WN3, WST1, SR1+, FED1+, FED2+, FED3+, FED4, ZARXP, TOLPASS, LG1, DXFPLOT, GEO1+,	8,500
TOL2, GEO2, GEO3, ZM1, ZM3, WN6, WN7, LG2, FED12, FED13, WN8, WN9, WN11, DI1, FED15, GR1)	
HEXAGON Mechanical Engineering Base Package (ZAR1+, ZAR3+, ZAR5, ZAR6, WL1+, WN1, WST1,	4,900
SR1+, FED1,+, FED2+, FED3+)	4,900
HEXAGON Spur Gear Package (ZAR1+ and ZAR5)	1,585
HEXAGON Planetary Gear Package (ZAR1+, ZAR5, ZAR7, ZAR8, GR1)	3,600
HEXAGON Involute Spline Package (WN2+, WN4, WN5, WN10, WNXE)	1,200
HEXAGON Graphic Package (DXF-Manager, HPGL-Manager, DXFPLOT)	741
HEXAGON Helical Spring Package (FED1+, FED2+, FED3+, FED5, FED6, FED7)	2,550
HEXAGON Complete Spring Package (FED1+, FED2+, FED3+, FED4, FED5, FED6, FED7, FED8,	4,985
FED9+, FED10, FED11, FED12, FED13, FED14,, FED15, FED16, FED17)	
HEXAGON Tolerance Package (TOL1, TOL1CON, TOL2, TOLPASS)	945
HEXAGON Complete Package (All Programs)	14,950

Quantity Discount for Individual Licenses

Licenses	2	3	4	5	6	7	8	9	>9
Discount %	25%	27.5%	30%	32.5%	35%	37.5%	40%	42.5%	45%

Network Floating License

Licenses	1	2	3	4	5	6	78	911	>11
Discount/Add.cost	-50%	-20%	0%	10%	15%	20%	25%	30%	35%
		111							

(Negative Discount means additional cost)

Language Version:

- German and English : all Programs

- French: FED1+, FED2+, FED3+, FED4, FED5, FED6, FED7, FED9+, FED10, FED13, FED14, FED15, TOL1, TOL2.

- Italiano: FED1+, FED2+, FED3+, FED4, FED5, FED6, FED7, FED9+, FED13, FED14, FED17.

- Swedish: FED1+, FED2+, FED3+, FED5, FED6, FED7.

- Portugues: FED1+, FED17

- Spanish: FED1+, FED2+, FED3+, FED17

Updates:

Software Update (software Win32/64 + pdf manual) 40 EUR

Software Update (software 64-bit Win + pdf manual) 50 EUR

Update Mechanical Engineering Package: 800 EUR, Update Complete Package: 1200 EUR **Maintenance contract** for free updates: annual fee: 150 EUR + 40 EUR per program

Hexagon Software Network Licenses

Floating License in the time-sharing manner by integrated license manager.

Conditions for delivery and payment

Delivery by Email or download (zip file, manual as pdf files): EUR 0.

General packaging and postage costs for delivery on CD-ROM: EUR 60, (EUR 25 inside Europe) Conditions of payment: bank transfer in advance with 2% discount, or PayPal (paypal.me/hexagoninfo) net. After installation, software has to be released by key code. Key codes will be sent after receipt of payment.