HEXAGON Info 189

by Fritz Ruoss

FED9 +: **Spiral spring software with production drawing, animation, Quick input, Quick4** We have created a new plus version of FED9. FED9 + contains all the functions of FED9 plus production drawing, animation, Quick4 view, online input and spring characteristics as polar diagram.

FED9+ Quick input

FED9+ Spiral Springs		×
Display 03: Quick 3 Aux. [mage GEOMETRY: Spiral springs - Dimensions	Drawing name Drawing number Drawing number Drawing number Line 1 Application Example	
	material EN 10132-4 102Cr6+QT Application	
Recalculation width b 20 mm	spring end inside	
flat thickness t 2 mm No.of coils n0 4.5 coil radius Ri 18 mm	length spring end 0 mm stress cycle frequency 1 1/s (f = 60/min) bending radius mm bending radius mm operating temperature 20 *C ?	
coil radius Re 52 mm spring angle alpha 1 45 * spring angle alpha 2 225 *	Error : Error : Sig q2: Sig perm 1 Warning: Sig c3: Sig perm 1 Warning: rbe(1:5"d ! spring shot-blasted	
	Cancel Help Aux Image Calculation method mm <> inch Calc	

Load-deflection curve of the spiral spring as polar diagram in FED9+

FED9+ Production drawing

FED9 + is available now at a price of 490 euros, or as an upgrade from FED9 to FED9 + for 194 euros.

FED7: Quick Input

FED7 Nonlinear Compression Spring - Quick Input	×
Display 03: Quick 3 V Drawing name Spring Drawing number 8587608	
Aux_Image SECTIONS: Input of Coil Sections V Drawing name 2 Druck/eder	
Coils Line 1 Hepu calculation	
<pre><+ + - 2 Line 2</pre>	
1 000 5 0.6 96.75 1.3.8 11 220 mm 7 66.E N 1008954SiCV6 hot-rolled spring steel wire	$\overline{}$
3 44,97 0,6 149,3 15 L2 130 mm < surface ground	~
4 4 0.00 103.4 13 Copy Paste Lx 110 mm < tolerance d DIN 2077 (780 mm) < d = 16.2 ± 0.2	mm
6 47.5 0.6 173.2 16.2 Delete Inset	000
7 46,65 0,0 165 15,6 Calculation method	KI
0 44,97 0,06 143,3 13 9 42,44 0,6 126,4 14,4 spring	
10 33,25 0,6 96,75 13,8 V ?	N
tolerance e DIN 2096 v e1 = 84.35 mm	
e2o = 2.419 mm	
end coils lined-up and ground v	_
Ic = [nt + 10.3] 1* d may production compensation by not defined ~	
production hot coiled, steel with reworked surface V type of stress dynamic V	
No. of inactive end coils view of the spring shot-blasted required load cycles 10E6 v Calc Nreg 1E7?	
end coils 1 (upper) 0.75	
end coils 2 (lower) 0.75 c production drawing	
operating temperature T 20 *C <	
colling direction right-hand v external mass m 0 kg <	
Fitter / Manuface Investored	
Warning table table t	

In the quick input, all input windows have been combined in one large window. With "Calc" the spring is calculated and the results are displayed in the background window.

FED1+: tauoz/tauk2 in Goodman diagram

If the spring force F1 is relatively high, the spring stroke is not limited by the maximum stroke tension, but rather by the (static) upper tension (error message tauk2> tauz). That this can also be seen numerically in the Goodman diagram, the safety margin tauoz / tauk2 is now also displayed.

WN4, WN5: Hoop Stress

In the strength calculation according to the "SAE Design Guide", the hoop stress Sh is the hoop stress in the hub, which can be quite high if the wall thickness is small. However, the hoop stress Sh was output too small, this has been corrected. The shear stress St in the hub can be even higher; in contrast to the "hoop stress", this is independent of the overlapping face width. In contrast to the shear stress of the shaft, the shear stress of the hub can be neglected if the forces are directly derived radially, e.g. if the hub is a gear or a pulley. If torsion does not occur, then "torsional shear stress" in the hub is not relevant. Otherwise the outside diameter of the hub should be increased.

🔛 WN4 - SAE Involute Splines - 0.wn4 🛛 — 🗆 🗙									
<u>F</u> ile <u>E</u> dit <u>V</u> iew <u>C</u> AD <u>S</u> TL <u>D</u> atabase D <u>o</u> cument O <u>L</u> E <u>H</u> elp									
Load and material data									
Shaft torque T Ibfin 132761									
Max.allow.compr.stres	ss		Sac	psi	12000				
Max.allow.shear stres	s		Sas	psi	49994				
STRESS (b=2,6000in) ext.spl. int.spl.									
Compressive stress	Sc	F	osi	4626	4626				
Comp.stress(crown.)	Scc	F	osi	19701	19701				
Hoop stress	Sh	F	osi	1038	51147				
Bending stress	Sb	F	osi	476	159				
Torsion.shear stress	St	F	osi	17112	248496				
Equivalent stress	Se	F	osi	29678	433456				
Safety compr.stress	S Sc			2,88	2,88				
Safety compr.(crown.)	S Scc			0,68	0,68				
Safety equiv.stress	S Se			0,94	0,06				
		-		-,	-,				

🌞 WN2	+ Involu	ite Splin	es DI	V 5480:20	006	- 0.wn2	2	_		×
<u>F</u> ile <u>E</u> di	t <u>V</u> iew	<u>C</u> AD	<u>s</u> tl	<u>D</u> ataba	se	D <u>o</u> cur	nent	O <u>L</u> E	<u>H</u> elp	
load										
Nominal torque TN Nm 50000										
Maxim	um tor	que			Tmax	(Nm	5000	0	
Applic	ation fa	actor				KA			1,0	0
Equiva	al. torqu	le				Teq		Nm	5000	0
Face v	vidth					b eff		mm	144,	00
Alterna	ating lo	ad fac	tor			fW			1,0	0
Load o	listribu	tion fa	actor	•		K Ibda			1,00	
Equiv.	Equiv.eff.surface pressure					peq		MPa	12	1
Max eff.surface pressure					pmax		MPa	10	3	
STRE	IGTH						1		2	
materi	al						1.00	070	0.6030)
Yield F	oint				Re)	- 36	50	240	
SAE C	ompres	ssive s	stres	s	Sc	;	6	2	62	
SAE H	oop str	ress			Sł	h 2		0	75	
SAE B	ending	stres	s		SŁ)	6	6	2	
SAE T	orsiona	al shea	ar sti	ress	St		41	9	548	
SAE E	quivale	nt str	ess		Se	;	72	26	952	
Safety	fW*pa	dm/pe	q		S.	eq	3,8	37	3,97	
Safety	fL*pac	dm/pn	nax		S.	max	4,5	55	4,67	

WN2+, WN10: Load stress according to SAE Design Guide

The strength calculation in WN2 + and WN10 has so far been limited to the surface pressure on the tooth flanks and the torsional stress of the shaft, using various methods: according to Niemann (2005), according to Niemann (1981), according to Roloff / Matek. Now the calculation according to the SAE Design Guide (1994) has been added. There have already been several drafts of DIN 5466 specifically for splines according to DIN 5480, but these have all been withdrawn. It was not possible to analytically calculate stress distribution, notch factors, maximum stress, suitable for any size.

STRESS CALCULATIONS ACCORDING TO SAE DESIGN GUIDE

Compressive stress	Sc	MPa	62	
Spline teeth shear stress	Ss	MPa	68	
Hoop stress	Sh	MPa	20	75
Bending stress	Sb	MPa	6	2
Stress concentration factor	Kt		2,2	2,2
Torsional shear stress	St	MPa	419	548
Equivalent stress	Se	MPa	726	952

SR1+: New warning messages

Warning if deformation of clamping plate > 5% Warning if assembly angle $> 360^{\circ}$

Windows 11

Windows 11 has been around since October 2021. All HEXAGON programs run without problems with Windows 11. Even 15 year old versions.

Directories Graphics CAE	Colour Printer	Printout Settings	external	Drawing		
Color graphics color monochrom	b	1920 x 1080 ackground colour		dialog w 102 3 Dialog e 100 3	iindow size % lement size %	<
Window Size x 1904 y 968	Zoom zo Zoor	om increment 1,02 n Mouse Wheel ? (pan faktor 0,02	<	Input	ble ?	- •
Derived Provided Prov	EXAGON FED1+ V31	.3 #1252 - KERN-LIEB	3ERS	-15 🕑 30	90 D Edit x,y,z	210
Text Font Arial Style:3 Textwidth/h	eight 0,8 <	Text height factor	<		Help	

The corners are now more rounded and some controls look a bit different, otherwise you won't notice a big difference to Windows 10.

Network floating licenses: Key code for UNC path

With a floating license, all clients must use the same network path. If this path is a UNC path, a problem with some versions was that only one client computer could access the software. There is no problem if the key code request is "Request key code for wxxxx-10247: xxxx" or the network drive is a logical drive. The problem no longer occurs with new versions or updates.

Tip: Individual configuration for the network version

With the network version it is important that each user uses his own configuration (cfg file in the working directory). The working directory is configured by clicking the program icon with the right mouse button, then "Properties", "Shortcut", "Execute in". Write "C: \ HEXAGON", then the cfg file will be read from there. When the program is started by clicking on a calculation file, the cfg is also loaded from "C: \HEXAGON".

Tip on installation and data backup

After downloading, unzip the zip file directly onto a CD-ROM or SD card, then install the software from this CD or SD.

HEXAGON PRICE LIST 2021-11-01

Base price for single licences (perpetual)	EUR
DI1 Version 2.1 O-Ring Seal Software	190
DXF-Manager Version 9.1	383
DXFPLOT V 3.2	123
EED1+ V31.3 Helical Compression Springs incl. spring database, animation, relax_3D	695 -
FED2+ V21.9 Helical Extension Springs incl. Spring database animation relaxation	675 -
FED3+ V21.4 Helical Torsion Springs incl. prod drawing animation 3D rectang wire	600 -
FED4 Version 8 0 Disk Springs	430
EEDE Version 17.0 Conical Comprossion Springs	7/1
FEDS Version 17.0 Conical Compression Springs	741
FED6 Version 18.0 Nonlinear Cylindrical Compression Springs	634
FED7 Version 15.0 Nonlinear Compression Springs	000
FED8 Version 7.4 Torsion Bar	317
FED9 Version 7.0 Spiral Spring	394
FED9+ Version 7.0 Spiral Spring incl. production drawing, animation, Quick input	490
FED10 Version 4.5 Leaf Spring	500
FED11 Version 3.6 Spring Lock and Bushing	210
FED12 Version 2.7 Elastomer Compression Spring	220
FED13 Version 4.2 Wave Spring Washers	228
FED14 Version 2.6 Helical Wave Spring	395
FED15 Version 1.6 Leaf Spring (simple)	180
FED16 Version 1.3 Constant Force Spring	225
FED17 Version 2.1 Magazine Spring	725
GEO1+ V7.5 Cross Section Calculation incl. profile database	294 -
GEO2 V3.3 Rotation Bodies	194 -
GEO2 V3.5 Notation Bodies	205
GEO3 V4.0 Herizian Pressure	205
GEO4 V5.5 Calli Soltwale	200
GEOS VI.0 Geneva Drive Mechanism Software	210
GEO6 V I.0 Pinch Roll Overrunning Clutch Software	232
GEO7 V1.0 Internal Geneva Drive Mechanism Software	219
GR1 V2.2 Gear construction kit software	185
GR2 V1.2 Eccentric Gear software	550,-
HPGL-Manager Version 9.1	383
LG1 V6.6 Roll-Contact Bearings	296
LG2 V3.1 Hydrodynamic Plain Journal Bearings	460
SR1 V24.0 Bolted Joint Design	640
SR1+ V24.0 Bolted Joint Design incl. Flange calculation	750
TOL1 V12.0 Tolerance Analysis	506
TOL2 Version 4.1 Tolerance Analysis	495
TOLPASS V4.1 Library for ISO tolerances	107
TR1 V6.4 Girder Calculation	757
WI 1+ V21 7 Shaft Calculation incl. Roll-contact Bearings	945 -
WN1 V12 4 Cylindrical and Conical Press Fits	485 -
WN2 V11 2 Involute Splings to DIN 5/80	250 -
WN2 V11.2 Involute Splines to DIN 5480 and non-standard involute splines	230.
WN2+ V 11.2 Involute Splines to DIN 5460 and holi-standard involute Splines	245
WNA V 6.4 Invalute Onlines to ANOLD 0005, ANSI D17.1, DIN 0092	240
WN4 V 6.1 Involute Splines to ANSI B 92.1	276
WN5 V 6.1 Involute Splines to ISO 4156 and ANSI B 92.2 M	255
WN6 V 4.1 Polygon Profiles P3G to DIN 32711	180
WN7 V 4.1 Polygon Profiles P4C to DIN 32712	175
WN8 V 2.6 Serration to DIN 5481	195
WN9 V 2.4 Spline Shafts to DIN ISO 14	170
WN10 V 4.4 Involute Splines to DIN 5482	260
WN11 V 2.0 Woodruff Key Joints	240
WN12 V 1.2 Face Splines	256
WN13 V 1.0 Polygon Profiles PnG	238
WN14 V 1.0 Polygon Profiles PnC	236 -
WNXE V 2.3 Involute Splines – dimensions, graphic, measure	375 -
WNXK V 2.2 Serration Splines – dimensions, graphic, measure	230 -
WST1 V 10.2 Material Database	230
7AP1 V 26 7 Spur and Holical Gaars	200
LAN IT V 20.7 SPULATIU TETICAL GEALS	CIII

ZAR2 V8.2 Spiral Bevel Gears to Klingelpherg	792 -
ZAR3+ V10.4 Cvlindrical Worm Gears	620
ZAR4 V6.3 Non-circular Spur Gears	1610
ZAR5 V12.3 Planetary Gears	1355
ZAR6 V4.3 Straight/Helical/Spiral Bevel Gears	585
ZAR7 V2.2 Plus Planetary Gears	1380
ZAR8 V1.8 Ravigneaux Planetary Gears	1950
ZAR9 V1.0 Cross-Helical Screw Gears	650
ZARXP V2.6 Involute Profiles - dimensions, graphic, measure	275
ZAR1W V2.6 Gear Wheel Dimensions, tolerances, measure	450
ZM1.V3.0 Chain Gear Design	326
ZM2.V1.0 Pin Rack Drive Design	320
ZM3.V1.0 Synchronous Belt Drive Design	224

PACKAGES	EUR
HEXAGON Mechanical Engineering Package (TOL1, ZAR1+, ZAR2, ZAR3+, ZAR5, ZAR6, WL1+, WN1,	
WN2+, WN3, WST1, SR1+, FED1+, FED2+, FED3+, FED4, ZARXP, TOLPASS, LG1, DXFPLOT, GEO1+,	8,500
TOL2, GEO2, GEO3, ZM1, ZM3, WN6, WN7, LG2, FED12, FED13, WN8, WN9, WN11, DI1, FED15, GR1)	
HEXAGON Mechanical Engineering Base Package (ZAR1+, ZAR3+, ZAR5, ZAR6, WL1+, WN1, WST1,	4 000
SR1+, FED1,+, FED2+, FED3+)	4,900
HEXAGON Spur Gear Package (ZAR1+ and ZAR5)	1,585
HEXAGON Planetary Gear Package (ZAR1+, ZAR5, ZAR7, ZAR8, GR1)	3,600
HEXAGON Involute Spline Package (WN2+, WN4, WN5, WN10, WNXE)	1,200
HEXAGON Graphic Package (DXF-Manager, HPGL-Manager, DXFPLOT)	741
HEXAGON Helical Spring Package (FED1+, FED2+, FED3+, FED5, FED6, FED7)	2,550
HEXAGON Complete Spring Package (FED1+, FED2+, FED3+, FED4, FED5, FED6, FED7, FED8,	4,985
FED9+, FED10, FED11, FED12, FED13, FED14,, FED15, FED16, FED17)	
HEXAGON Tolerance Package (TOL1, TOL1CON, TOL2, TOLPASS)	945
HEXAGON Complete Package (All Programs)	14,950

Quantity Discount for Individual Licenses

Licenses	2	3	4	5	6	7	8	9	>9		
Discount %	25%	27.5%	30%	32.5%	35%	37.5%	40%	42.5%	45%		

Network Floating License

Licenses	1	2	3	4	5	6	78	911	>11
Discount/Add.cost	-50%	-20%	0%	10%	15%	20%	25%	30%	35%

(Negative Discount means additional cost)

Language Version:

- German and English : all Programs

- French: FED1+, FED2+, FED3+, FED4, FED5, FED6, FED7, FED9+, FED10, FED13, FED14, FED15, TOL1, TOL2.

- Italiano: FED1+, FED2+, FED3+, FED4, FED5, FED6, FED7, FED9+, FED13, FED14, FED17.

- Swedish: FED1+, FED2+, FED3+, FED5, FED6, FED7.

- Portugues: FED1+, FED17

- Spanish: FED1+, FED2+, FED3+, FED17

Updates:

Software Update (software Win32/64 + pdf manual) 40 EUR

Software Update (software 64-bit Win + pdf manual) 50 EUR

Update Mechanical Engineering Package: 800 EUR, Update Complete Package: 1200 EUR **Maintenance contract** for free updates: annual fee: 150 EUR + 40 EUR per program

Hexagon Software Network Licenses

Floating License in the time-sharing manner by integrated license manager.

Conditions for delivery and payment

Delivery by Email or download (zip file, manual as pdf files): EUR 0.

General packaging and postage costs for delivery on CD-ROM: EUR 60, (EUR 25 inside Europe) Conditions of payment: bank transfer in advance with 2% discount, or PayPal (paypal.me/hexagoninfo) net. After installation, software has to be released by key code. Key codes will be sent after receipt of payment.