
HEXAGON Newsletter 187

by Fritz Ruoss

GEO3: Quick3 View

In the Quick3 view, all data are displayed on the graphic screen, with drawings and diagrams of deformation, pressure, spring rate, and stress spectrum under the surface.

GEO3: Elastic compression of ball or roller

If the Hertzian pressure between spheres or cylinders is to be determined, GEO3 now also calculates the compression of the bodies, as well as the total spring rate, taking into account the compression of the ball or cylinder.

Elastic compression (Hooke's law): s = F * L / (A * E)Average area cylinder: A = ders * L (ders = 0.7 * d)Average area sphere: $A = pi / 4 * ders^2 (ders = 0.6 * d)$ Spring rate R = F / s = 1 / (1 / R1 + 1 / R2))

GEO3: Quick Input

In the quick input, all input windows are integrated into one large window, in the background you can display all possible graphic windows with calculation results and diagrams.

Display	Display 03: Quick 3 🗸 🗸		Drawing name Rikula			Drawing number 6000					
Aux, Image	GEOMETRY: D	imensions	;		 Drawing name 	2 outer p	air				
		_			Lin	e 1					
compressive	load F 1000	Ν			Lin	e 2					
					Lin	e 3					
body 1 ball	d = 5,5	mm			body 1			body 2			
-		1			database				database.		
🔘 cylinder	d = 10	mm	L = 0	mm	material number 1	1.2067		m	aterial number 2	1.2067	
○ special	rx = 2,75	mm	ry = 2,75	mm	material 1	102Cr6 / 1	.00Cr6 H		material 2	102Cr6 /	100Cr6 H
					modulus of elasticity E1	210000	MPa	modulu	s of elasticity E2	210000	MPa
body 2 O ball	d = 0	mm			Poisson ratio µ1	0,3			Poisson ratio µ2	0,3	
🔾 cylinder	d = 12,5	mm	L = 8	mm	tensile strength Rm1	1900	MPa	tens	ile strength Rm2	1900	MPa
special	rx = -3	mm	ry = -11,75	mm	yield point Re1	1900	MPa		yield point Re2	1900	MPa
) plane					density rho1	7,8	kg/dm3		density rho2	7,8	kg/dm3
	ок		ancel	Help Au	x. Image mm <> inch	Calc	Erro	r : Calculat	ion successful wit	hout error	messages

FED4: Quick Input

In the new Quick input of the disk spring design software, all input windows are combined into one large window, in the background you can display all possible graphic windows with calculation results and diagrams.

)isplay			\sim	Drawing name Disk spring	Drawing number 14.18
. Image			~	Drawing name 2	
				Line 1 Decker Ma	ischinenelemente Aufgaben
ensions, defle	lection			Line 2	
	outside diameter De [inside diameter De [material	Spring Steel to EN 10132-4	production
	thickness t	1,5 mm	ODatabase		cold coiled (up to d = 17 mm)
0 10 0 h0	spring length l0 h0 = l0 - t = sc		Application		spring shot-blasted
<	< DIN 2093		type	of stress static or quasistatic \sim	friction
	n (nf)	1			
	i (nn)	12			skirt friction wM 0,008 <
	i (np) [deflection s1 [deflection s2 [working tempera	ature ℃ 20 ℃ <	edge friction wR 0,023
rance	deflection s1	0,2 mm <	working tempera	ature °C 20 °C <	
rance	deflection s1	0,2 mm <	working tempera		
rance	deflection s1 (0,2 mm < 6 mm <			edge friction wR 0,023
	deflection s1 [deflection s2] DIN 2093	0,2 mm < 6 mm < others	tolerance max.	tolerance min.	edge friction wR 0,023
t	deflection s1 [deflection s2] DIN 2093	0,2 mm < 6 mm < others	tolerance max. t 0,04	tolerance min.	edge friction wR 0,023
t LO	deflection s1 [deflection s2 [DIN 2093	0,2 mm < 6 mm < others	tolerance max. t 0,04 L0 0,15	tolerance min. -0,12 mm -0,08 mm	edge friction wR 0,023

FED5: Quick Input

New Quick input: Enter all data in one large window, check results in background graphic.

ED5 - Conical Spring Software - Quick Input						
Display	Drawing name	Conical Spring	Drawing nu	umber 324	878	
ux. Image	Drawing name 2					
	Line 1	Application Example				
dimensions Calculation method	Line 2					
d 4,5 mm DB						
Dmo 21 mm ?	material 18	ISO 6931-1-4310-NS X10C	'Ni 18-8	4310-301-0	0-I-NS	\sim
Dmu 40 mm			surface	drawn		\sim
L0 78 mm Dimensioning	tolerance d	DIN 2076 C (0.07 20 mm) ~ <	d = 4,5 ±	0,025	mm
n 7	tolerance Dm.De.D	EN 15800 Quality Class 2		0,35	/ -0,35	mm
L1 70 mm <			Dmu = 40 ±		/ -0,6	mm
L2 50 mm <	tolerance L0	EN 15800 Quality Class 2	✓ L0 = 78 +/-	1,383	/ -1,383	mm
Po/Pu 1 <	tolerance F1	EN 15800 Quality Class 2	F1 = 136,9 +/-	37,64	/ -37,64	mm
Pojru X	tolerance F2	EN 15800 Quality Class 2	F2 = 559,7 +/-	43,99	/ -43,99	mm
end coils lined-up and ground V	tolerance e1, e2	EN 15800 Quality Class 2	✓ e1 =	3,9	mm	
Lc = (nt + 0) * d max			e2o =	0,765	mm	
			e2u =	1,335	mm	
production cold coiled (up to d = 17 mm) \sim	production comp	ensation by not defined				~
No. of inactive end coils	production comp	Instantined				*
end coils 1 (upper)		type of stress dy	namic	`	/	
end coils 2 (lower)		required load cycles	~ 🗆 Ca	lc Nreq>1E	7?	
coiling direction right-hand V	s	tress cycle frequency 1/s	1/s (f =	720/min)		
spring shot-blasted		operating temperature T 20	•C <			
		external mass m 0	kg <			
Error : Error : taukh>tauhperm! S=0,61 Warning: tauc>tauperm! S=0,67		externar mass III	vy 🔼			
	mm	<> inch Help	Calc	Cancel		OK

FED2+, ZAR2, ZAR6, ZAR1W, WL1+, WN1, TR1, FED4, FED5, FED10: Expert Mode

In the programs with quick input, the "Expert Mode" can be switched off in the Help menu. New users and occasional users should switch off the "Expert Mode", which makes it easier to use the software because only the most important options are displayed in the menu. Under "Edit" only "Quick Input". "Database" and "OLE" menu are completely hidden in this settings.

WN2, WN2+: Data field to DIN 5480-1:2006 modified

According to DIN 5480-1: 2006 (machining), the tolerance of the root diameter is:

Adf2 = (0.2m + 1.73 (Ae + TG)) and Adf1 = -(0.2m + 1.73 * (-As + TG)).

In WN2, the tooth gap tolerances of the selected tolerance field were used until now. In fact, the tolerances from series 9H and a11 must always be used. The table also contains the theoretical nominal dimensions of the tip and root diameter. Instead of the calculated maximum diameter. This has been corrected, the root diameter tolerances are now even greater. Nothing changes in the gear data. The tip and root circle tolerances from tooth thickness dimensions and tooth height factors are much smaller and are well within the DIN 5480 tolerances. According to Chapter 7.1 in DIN5480-1: 2006, the dimensions of the root diameter must be reduced if hfp = 0.6m or hfp = 0.65m instead of hfp = 0.55m. Adapted formulas:

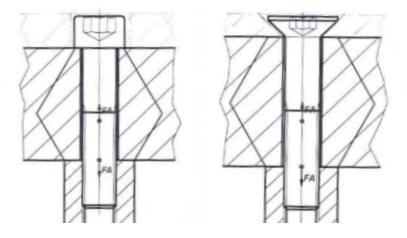
 $\begin{array}{l} Adf1 = - \left(0.2m + 1.73 * (- \mbox{ As } + \mbox{ TG}) \right) + 2 * (\mbox{hfp-}0.55 * \mbox{ m}) \mbox{ for } \mbox{hfp} \ / \ m = 0.55 \ .. \ 0.65) \\ Adf2 = \left(0.2 * \mbox{ m} + 1.73 * (\mbox{Ae} + \mbox{ TG}) \right) - 2 * (\mbox{hfp-}0.55 * \mbox{ m}) \\ \end{array}$

If a fit (j .. v) with overlap is selected, the largest dimension is outside the DIN 5480 dimensions. Because according to DIN 5480 the nominal dimension is used as the largest dimension. It is a good thing that the information given in DIN 5480 Table 5 is only "recommended tolerances and dimensions for tip and root diameter".

WN2, WN2+: Gearing data table

In addition to "Tables DIN 5480: 1991" and "Table DIN 5480: 2006" there is now "Table gear". The difference to the DIN 5480 tables is that for tip and root diameter there are no arbitrarily defined dimensions, but the individually calculated maximum and minimum dimensions of tip and root diameter with flank centering from tooth thickness dimensions and tooth height factors. The profile shift factors x, xemax, xemin (nom / max / min) are also output.

WN2+ Involute Splines DIN 54				—	
le <u>E</u> dit <u>V</u> iew <u>C</u> AD <u>S</u> TL <u>D</u> i	atabase D	<u>o</u> cument	O <u>L</u> E <u>H</u> elp		
Shaft DIN 5480 - W 80 x 2 x 38 x 8f			Hub DIN 5480 - N 80 x 2 x 38 x 9H		
No. of teeth	z	38	No. of teeth	z	38
module	m	2	module	m	2
Pressure angle	alpha	30 °	Pressure angle	alpha	30 °
Dedendum coeff	hfp/m	0,55	Dedendum coeff	hfp/m	0,55
Profile shift coeff.	x	0,45000	Profile shift coeff.	x	-0,45000
Profile shift coeff. max.eff.	xe max	0,43917	Profile shift coeff. max.eff.	xe max	-0,45000
Profile shift coeff. min.act.	xe min	0,41493	Profile shift coeff. min.act.	xe min	-0,48464
Tip diameter	da1 nom	79,600	Root diameter	df nom	80,000
Tip diameter (xemax)	da1 max	79,557	Root diameter (xemax)	df min	80,000
Tip diameter (xemin)	da1 min	79,460	Root diameter (xemin)	df max	80,139
Root form diameter max	dFf1 lim	75,920	Root form diameter min	dFf2 lim	79,680
Root form diameter (xemax)	dFf1 max	75,877	Root form diameter (xemax)	dFf2 min	79,680
Root form diameter (xemin)	dFf1 min	75,781	Root form diameter (xemin)	dFf2 max	79,819
Root diameter	df1 nom	75,600	Tip diameter (x)	da2 nom	76,000
Root diameter (xemax)	df1 max	75,557	Tip diameter (xemax)	da2 min	76,000
Root diameter (xemin)	df1 min	75,460	Tip diameter (xemin)	da2 max	76,139
Tooth thickness max. eff. (xemax)	s v max	4,156	Tooth gap max. actual (xemin)	e max	4,261
Tooth thickness max. act. Ref.	s max	4,136	Tooth gap min. act. Ref.	e min	4,211
Tooth thickness min. actual (xemin)	s min	4,100	Tooth gap min. eff. (xemax)	e v min	4,181
No. of teeth measured	k	7	Pin/ball diameter	DM	3,500
Span measure (k=7)	Wmax	39,768	Measurement between pins	M2max	72,877
Span measure (k=7)	Wmin	39,737	Measurement between pins	M2min Ref.	72,792


WN2, WN2+: Calculate form interference

In DIN 5480-1: 2006 it is stated how large the root form circle diameter dFf should be (since [mating gear] + 2 * cFmin), but not how large it actually is. DFf is calculated from head height factors (haP = 0.45m, hfP = 0.55m ... 0.65m), root rounding factor (0.16 m), profile shift and tooth thickness dimensions.

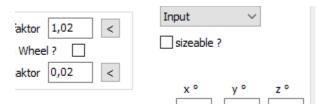
In WN2 +, cF1,2 is now also calculated, the distance from the start of the involute to the tip diameter of the mating gear. Error messages are displayed if cF < 0 or cF < cFmin. Then you either have to reduce the fillet root radius or modify the tooth height factors.

Min interference util.	cF min	mm	0,0	40
CF1,2 = -(da1,2 + dffmax2,1)/2	cF	mm	0,062	0,062
Root form diameter lim	dFflim	mm	75,920	-79,680
Root form diameter max	dFfmax	mm	75,877	-79,680
Root form diameter min	dFfmin		75,781	-79,819

SR1 Tip: Bolted joint with countersunk screw head (cylindrical or conical)

If a cylinder head screw is countersunk in the first clamping plate, the height of the first clamping plate must be reduced by the height of the screw head or the countersink, because the clamping plate is not clamped in the area of the countersink.

It is similar with countersunk screws. Here, however, the clamping plate is at least partially clamped in the area of the countersink, so the height of the clamping plate can only be shortened by part of the head height. In VDI 2230 there are no countersunk screws, in SR1 countersunk screws are therefore calculated like cylinder screws. The graphic representation with the countersunk head on the clamping plate is corresponding.


See example 1 in VDI 2230: Length of clamping plate L1 = height of piston including countersink - height of countersink = 55mm - 13mm = 42mm.

Same application with countersunk screw instead of hexagon socket screw: length of clamping plate L1 = height of piston including countersink - height of countersink = 55mm - 8mm = 47mm.

All Programs: Input window sizeable yes/no?

So far you could change the size of all input windows. This is only absolutely necessary if the graphics settings are not yet correct. It was annoying that the size was unintentionally changed when the mouse was "swiping past". Therefore you can now set "sizeable" in the dialog window under "File \ Settings \ Graphics". In the standard setting, "sizeable" is off.

Only the database window, the configuration window and the preview window under "File $\$ Open (table)" can always be opened.

Update: Install new release together with previous release

If you don't want to replace the old version with the new one during an update, you can use the old and new version alternately. With a single user license, the new version is installed in a different folder on the same computer. With a network floating license, the exe program file of the new or old version is renamed and copied to the same directory (e.g. wfed1.exe and wfed1neu.exe). The old and new versions then run under the same key code and the same license.

HEXAGON PRICE LIST 2021-07-01

	UR
Base price for single licences (perpetual) El DI1 Version 2.1 O-Ring Seal Software	190
DXF-Manager Version 9.1	383
DXFPLOT V 3.2	123
FED1+ V31.2 Helical Compression Springs incl. spring database, animation, relax., 3D,	695
FED2+ V21.9 Helical Extension Springs incl. Spring database, animation, relaxation,	675
FED3+ V21.4 Helical Torsion Springs incl. prod.drawing, animation, 3D, rectang.wire,	600
FED4 Version 8.0 Disk Springs	430
FED5 Version 17.0 Conical Compression Springs	741
FED6 Version 17.2 Nonlinear Cylindrical Compression Springs	634
FED7 Version 14.3 Nonlinear Compression Springs	660
FED8 Version 7.4 Torsion Bar	317
FED9 Version 6.4 Spiral Spring	394
FED10 Version 4.5 Leaf Spring	500
FED11 Version 3.6 Spring Lock and Bushing	210
FED12 Version 2.7 Elastomer Compression Spring	210
FED13 Version 4.2 Wave Spring Washers	228
FED14 Version 2.6 Helical Wave Spring	395
FED15 Version 1.6 Leaf Spring (simple)	180
FED16 Version 1.3 Constant Force Spring	225
FED17 Version 2.1 Magazine Spring	725
GEO1+ V7.5 Cross Section Calculation incl. profile database	294
GEO2 V3.3 Rotation Bodies	
GEO3 V4.0 Hertzian Pressure	205
GEO4 V5.3 Cam Software	<u>265</u> 218
GEO5 V1.0 Geneva Drive Mechanism Software	
GEO6 V1.0 Pinch Roll Overrunning Clutch Software	232
GEO7 V1.0 Internal Geneva Drive Mechanism Software	219
GR1 V2.2 Gear construction kit software	185
GR2 V1.1 Eccentric Gear software	550,-
HPGL-Manager Version 9.1	383
LG1 V6.6 Roll-Contact Bearings	296
LG2 V3.1 Hydrodynamic Plain Journal Bearings	460
SR1 V23.9 Bolted Joint Design	640
SR1+ V23.9 Bolted Joint Design incl. Flange calculation	750
TOL1 V12.0 Tolerance Analysis	506
TOL2 Version 4.1 Tolerance Analysis	495
TOLPASS V4.1 Library for ISO tolerances	107
TR1 V6.4 Girder Calculation	757
WL1+ V21.7 Shaft Calculation incl. Roll-contact Bearings	945
WN1 V12.4 Cylindrical and Conical Press Fits	485
WN2 V10.5 Involute Splines to DIN 5480	250
WN2+ V10.5 Involute Splines to DIN 5480 and non-standard involute splines	380
WN3 V 6.0 Parallel Key Joints to DIN 6885, ANSI B17.1, DIN 6892	245
WN4 V 5.1 Involute Splines to ANSI B 92.1	276
WN5 V 5.2 Involute Splines to ISO 4156 and ANSI B 92.2 M	255
WN6 V 4.1 Polygon Profiles P3G to DIN 32711	180
WN7 V 4.1 Polygon Profiles P4C to DIN 32712	175
WN8 V 2.5 Serration to DIN 5481	195
WN9 V 2.4 Spline Shafts to DIN ISO 14	170
WN10 V 4.3 Involute Splines to DIN 5482	260
WN11 V 2.0 Woodruff Key Joints	240
WN12 V 1.2 Face Splines	256
WN13 V 1.0 Polygon Profiles PnG	238
WN14 V 1.0 Polygon Profiles PnC	236
WNXE V 2.3 Involute Splines – dimensions, graphic, measure	375
WNXK V 2.2 Serration Splines – dimensions, graphic, measure	230
WST1 V 10.2 Material Database	235
ZAR1+ V 26.7 Spur and Helical Gears	1115
ZAR2 V8.2 Spiral Bevel Gears to Klingelnberg	792

ZAR3+ V10.4 Cylindrical Worm Gears	620
ZAR4 V6.3 Non-circular Spur Gears	1610
ZAR5 V12.3 Planetary Gears	1355
ZAR6 V4.3 Straight/Helical/Spiral Bevel Gears	585
ZAR7 V2.2 Plus Planetary Gears	1380
ZAR8 V1.8 Ravigneaux Planetary Gears	1950
ZAR9 V1.0 Cross-Helical Screw Gears	650
ZARXP V2.6 Involute Profiles - dimensions, graphic, measure	275
ZAR1W V2.6 Gear Wheel Dimensions, tolerances, measure	450
ZM1.V3.0 Chain Gear Design	326
ZM2.V1.0 Pin Rack Drive Design	320
ZM3.V1.0 Synchronous Belt Drive Design	224

PACKAGES	EUR
HEXAGON Mechanical Engineering Package (TOL1, ZAR1+, ZAR2, ZAR3+, ZAR5, ZAR6, WL1+, WN1,	
WN2+, WN3, WST1, SR1+, FED1+, FED2+, FED3+, FED4, ZARXP, TOLPASS, LG1, DXFPLOT, GEO1+,	8,500
TOL2, GEO2, GEO3, ZM1, ZM3, WN6, WN7, LG2, FED12, FED13, WN8, WN9, WN11, DI1, FED15, GR1)	
HEXAGON Mechanical Engineering Base Package (ZAR1+, ZAR3+, ZAR5, ZAR6, WL1+, WN1, WST1,	4 000
SR1+, FED1,+, FED2+, FED3+)	4,900
HEXAGON Spur Gear Package (ZAR1+ and ZAR5)	1,585
HEXAGON Planetary Gear Package (ZAR1+, ZAR5, ZAR7, ZAR8, GR1)	3,600
HEXAGON Involute Spline Package (WN2+, WN4, WN5, WN10, WNXE)	1,200
HEXAGON Graphic Package (DXF-Manager, HPGL-Manager, DXFPLOT)	741
HEXAGON Helical Spring Package (FED1+, FED2+, FED3+, FED5, FED6, FED7)	2,550
HEXAGON Complete Spring Package (FED1+, FED2+, FED3+, FED4, FED5, FED6, FED7, FED8, FED9,	4,985
FED10, FED11, FED12, FED13, FED14,, FED15, FED16, FED17)	
HEXAGON Tolerance Package (TOL1, TOL1CON, TOL2, TOLPASS)	945
HEXAGON Complete Package (All Programs)	14,950

Quantity Discount for Individual Licenses

Licenses	2	3	4	5	6	7	8	9	>9
Discount %	25%	27.5%	30%	32.5%	35%	37.5%	40%	42.5%	45%

Network Floating License

Licenses	1	2	3	4	5	6	78	911	>11		
Discount/Add.cost	-50%	-20%	0%	10%	15%	20%	25%	30%	35%		
(Negative Discount means additional cost)											

(Negative Discount means additional cost)

Language Version:

- German and English : all Programs

- French: FED1+, FED2+, FED3+, FED4, FED5, FED6, FED7, FED9, FED10, FED13, FED14, FED15, TOL1, TOL2.

- Italiano: FED1+, FED2+, FED3+, FED4, FED5, FED6, FED7, FED9, FED13, FED14, FED17.

- Swedish: FED1+, FED2+, FED3+, FED5, FED6, FED7.
- Portugues: FED1+, FED17

- Spanish: FED1+, FED2+, FED3+, FED17

Updates:

Software Update (software Win32/64 + pdf manual) Software Update (software 64-bit Win + pdf manual) 40 EUR

50 EUR

Update Mechanical Engineering Package: 800 EUR, Update Complete Package: 1200 EUR Maintenance contract for free updates: annual fee: 150 EUR + 40 EUR per program

Hexagon Software Network Licenses

Floating License in the time-sharing manner by integrated license manager.

Conditions for delivery and payment

Delivery by Email or download (zip file, manual as pdf files): EUR 0.

General packaging and postage costs for delivery on CD-ROM: EUR 60, (EUR 25 inside Europe) Conditions of payment: bank transfer in advance with 2% discount, or PayPal (paypal.me/hexagoninfo) net. After installation, software has to be released by key code. Key codes will be sent after receipt of payment.

HEXAGON Industriesoftware GmbH

E-Mail: info@hexagon.de Web: www.hexagon.de