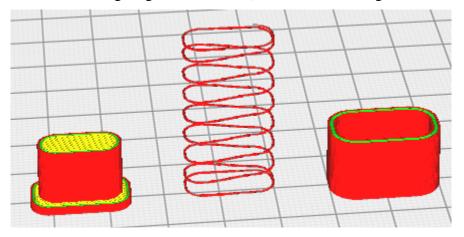

HEXAGON Newsletter 174

March / April 2019

by Fritz Ruoss

FED1+, FED5: Produce spring utilities mandrel and bore with 3D printer


Shaft and hub with mandrel and bore, generated as STL file and produced with 3D printer, can be used for a test assembly of the spring and compression up to spring length L2.

FED17 - Print mandrel and sleeve for magazine spring

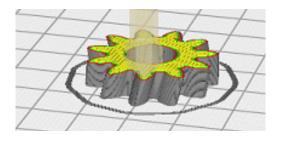
Mandrel and bore for magazine springs can be generated as an STL file and produced with a 3D printer now.

You can also enter the setting length under "Edit \ Production drawing" in FED17 now.

FED1..17: Warnings for fatigue strength diagram for hot formed springs

In EN 13906, there is only one fatigue strength diagram for hot coiled springs: for hot rolled steels according to EN 10089 with ground or peeled surface, shot blasted. Unlike cold-formed springs, the spring is fatigue strength safe in 2 million cycles, not 10 million like cold-formed springs. Conversely, a shorter life is calculated from dynamic shear stress: If the allowable variation of stress for fatigue strength is slightly exceeded, then the life is not a little less than 10 million load ccycles, but less than 2 million cycles.

The fatigue 2E6 load cycling diagram does not automatically apply to hot formed springs and / or EN10089 spring bars, it must be configured under "Edit \ Calculation Method". There are now 2 new alerts as hint for possibly inappropriate setting:


Warning: EN10089 fatigue 2E6 if hot formed or material EN10089, but fatigue diagram 1E7. Warning: Fatigue 1E7> <2E6? if cold-formed spring, but fatigue strength 2E6 set.

SR1/SR1+: Configure default material database

SR1+ calculation base			– 🗆 X
calculation base FM, MA VDI 2230 : 1986 VDI 2230-1:2015	Elasticity O deformation sleev deformation cone	ve (VDI 2230-1986) s (VDI 2230-1:2015)	p max O deformation sleeve
dPzu (80) VDI 2230-1:2015 🛛 🗸	☑ TTJ -> TBJ (phiD ☑ D'A max = 10 dw	•	vasher dwa=dw+1.6hs
Creep at FV min ✓ thread length engaged to Dose calc.min.thread length engag.for F9 ✓ Tolerances for friction coefficients for tolerances d2, d3	?	dim. (d2=d2nom, d3=d3no	MA pre FA pre F pre
Multi-bolted joint (FA, No Flange	FQ,FKR = f (MV) ?	calculation FA (Mb) fla Dose, VD12230-2 (1 VD12230-2 (43): FA	34) ?
 ☐ tightening angle incl. torsion bolt ? ☐ TTJ: thread engagement mgeo an ☑ Use approximation to reduce calcu Units metric/imperial metric (r 	d mtr reduced by bolt le ulation time MA = f (FM)	ength tolerance	wilt Mat mat_p_1.dbf pressung.dbf mat_p_1.dbf mat_p_2.dbf
ОК	Cancel <u>H</u> elj	o Text	Calc

When selecting the materials for clamping plates and nuts, you can choose between the database files pressung.dbf, mat_p_1.dbf and mat_p_2.dbf. The default setting can now be configured under "Edit \ Calculation Method" (Default Mat). If you want to use a database with your own material data, the best way is to use mat_p_1.dbf. This contains material data from VDI 2230: 2003, which you no longer need. If you have not yet used mat_p_1.dbf for previous calculations, you can delete and replace the existing records, otherwise you may append your own data to the bottom. Mat_p_2.dbf contains the materials from VDI 2230:2015, and pressung.dbf contains all old and new material data.

ZAR1+, ZAR5, ZAR6, ZAR7, ZAR8: Helical gears by means of 3D printer

Up to now, only straight-toothed gears could be output as STL files for 3D printer production. This is now also possible for helical teeth. The helix is represented as a staircase function. Minimal stair width is the smallest possible layer thickness of the 3D printer. Suitable as an illustrative and functioning model, but rather unusable for practical use.

ZAR3+: Strength Calculation according to DIN 3996:2012-09

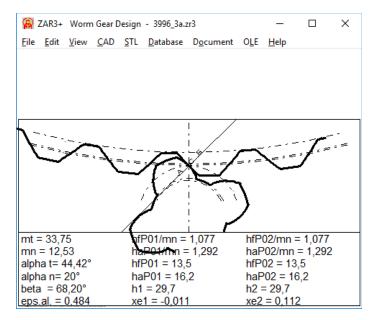
The strength of worm gears was previously calculated according to DIN 3996:1998-09. Now, the newer edition of 2012 has been integrated. ZAR3 + can now calculate strength and efficiency according to 3 methods: according to Niemann, according to DIN 3996: 1998 and according to DIN 3996: 2012. There were some changes on input:

- Polyalphaolefins were added to the lubricants

- Lubricant viscosity must now be entered for 40 $^\circ$ C and 100 $^\circ$ C, not for 50 $^\circ$ C
- Enter the number of sealing rings for power loss PD
- Select the wear limit: 0.3 mx * cos (gamma m) or pointed tooth

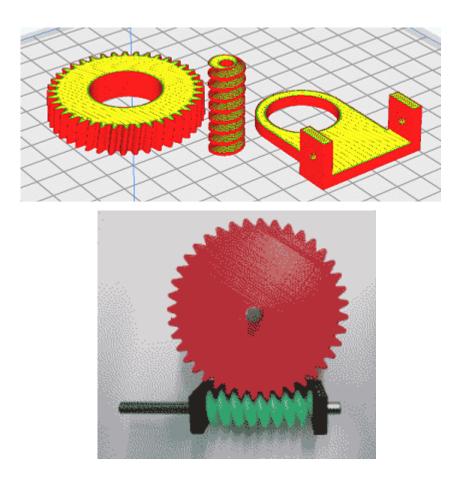
🙀 ZAR3+		_		×
☑ Calculation acc. DIN 3996 ?	vgr	n = 2,896m/	/s	
Iubrication fluidPolyglycol (E0:P0 = 0:1)splash lubrication	Lubricant viscosity nue 40 Lubricant viscosity nue 50 Lubricant viscosity nue 100	220 153,5 37	mm²/s mm²/s mm²/s	?
Bearing ● fix bearing ◯ fix/loose bearing	gear wheel temperature thetaM dynamic oil viscosity eta OM		C Ns/m²	<
2 ► radial seal	material lubrication coefficient WML application factor KA Min.Life expect. LH	1,75 1 25000	< < h <	?
wear limit deltaWlimn	i = 0.3 * mx * cos(gamma m)			\sim
	Tooth friction value μz 0,028	(Niemann) [?
ОК	Cancel <u>H</u> elp	[Calc	

Some help pictures had to be supplemented and updated because of changed characteristics in DIN 3996: 2012.


ile <u>E</u> dit <u>V</u> iew <u>C</u> AD <u>S</u>	<u>SIL D</u> atabase I	D <u>o</u> cument O <u>L</u> E <u>F</u>	lelp		
Worm: 16MnCr5	material lubricat	ion coefficient WNL t	o DIN 3996:1998		
	Mineral Oil	Polyglycol	Polyglycol		
Worm wheel material		EO:PO = 0:1	E0:P0 = 1:1		
GZ-CuSn12Ní	1.0	1,2	2.3		
GZ-CuSn12	1.6	1,5	-		
GZ-CuALLONi	GZ-CuAlIONi 2.5				
Warm: 16MnCr5	moterial lubricat	ion coefficient WNL t	o DIN 3995:2012		
Worm wheel material	Mineral Oil	Polyalphooletin	Polyglycol		
CuSn12+C+GZ	16	1.6	2.25		
CuSn12N(2+C+GZ	1.0	1.0	1.75		
CuSn12Ni2+C+GC	4.1	4.1	4.1		
CuAl10Fe5Ni5+C+GZ	1	1	-		
EN-GJS-400-15	1	1	1		
EN-GJL-25D	1	1	1		
3-E-103			Source: DIN 3996		

Material coefficient YW	3995:1998	3996: 2012
Worm wheel material	ΥW	Y₩
GZ-CuSn12 (CuSn12-C-GZ)	1.0	1,0
GZ-CuSn12Ni (CuSn12Ni2-C-GZ / GC)	0.95	0.95
GZ-CuAl10Ni (CuAl10Fe5Ni5-C-GZ)	1.1	1.1
EN-GJS-400-15 (GGG-40)	1.3	1.0
EN-GJL-250 (CG-25)	1.4	1.05

Shear Fatigue Strength tauFlimT						
	shear	reduced shear				
worm gear material	latigue strength	fatigue strength				
according to DIN	tauFlimT in N/mm²	tauFlimT in N/mm²				
GZ-CuSn12 (CuSn12-C-GZ)	92	82				
GZ-CuSh12Nî	100	90				
GZ-CuAl10Nî	128	120				
EN-GJS-400 (GGG-40)	115	115				
EN-GJL-25 (GG-25)	70	70				
PA-12 cast	23	23				


ZAR3+: Tooth contact axial

The meshing of worm and worm wheel can now also be represented in axial section in addition to the radial section. Also 1-tooth worms (ZI) are now displayed.

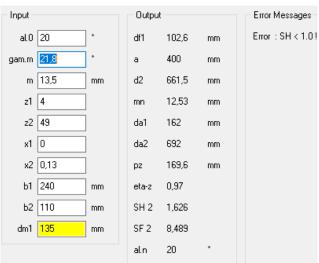
ZAR3 +: Worm gear model with 3D printer

The calculated cylindrical worm can now also be output as STL file and create a model with 3D printer (ZI worm). The associated worm wheel can not be issued as globoide worm wheel, but at least as a helical gear wheel.


ZAR3 +: bore and shaft for worm and worm wheel

For worm and worm wheel you can enter a bore under "Dimensions 2". For the worm, it can be a shaft rather than a hole. "Shaft 1" is 1 shaft extension on the worm gear (for overhung bearing assembly), and "shaft 2" a shaft on both sides of the worm. The dimensions are used for STL files. When producing a worm with 3D printer, it is better to use only "bore" or "shaft1".

🙀 ZAR3+ Dimensions	_		×
worm shaft 2		~	
diameter shaft 100	mm	<	
Length shaft 140	mm	<	
borehole diameter worm wheel 120	mm	<	
OK Cancel <u>H</u> elp Aux. <u>I</u> mage	mm <:	> inch C	alc


ZAR3 +: factor for no-load power loss PV0

The calculated no-load power loss PV0 sometimes seems too high for small, high-speed worm gears. The calculated no-load power loss at drive speed above 1000 rpm is often higher than the driving power, especially if plastic worm gears are used and therefore the drive power must be much smaller than in steel / bronze gear pairs. Efficiency and output power are then 0, and strength calculation is not possible. In order to be able to continue calculating or to adapt the calculation to measured values, one can now enter a factor for the consideration of the calculated no-load power loss PV0. Default is 100%.

ZAR3 +: Input dm1 for recalculation

The mean pitch diameter is actually a calculated value. If you change dm1, the module has been adjusted so far. The module stays the same now, instead the helix angle gamma_m changes.

ZAR3 +: axial pressure angle of the worm alphax

The axial pressure angle of the worm alphax was incorrectly output (smaller than alphan instead of larger than alphan). This only had an effect on worm gears with ZA profile, because there is alphax = alpha0, and alphan is calculated.

ZAR3 +: Input mx at "Dimensioning" changes either gamma_m or x2

If you enter the module at "Dimensioning", dm1 and gamma_m are recalculated. If you want integers or standardized dimensions for m as well as for dm1, the profile shift x2 is calculated first. If -0.5 > x2 < 1.0, x2 is set, otherwise dm1 and gamma_m are recalculated as before.

ZAR3+ geometry			
Input	Output		Error Messages
al.0 20 *	df1 101,6	mm	gear ratio !
a 315,000 mm	q 8,75		Error : Dm ball ! (0mm)
dm1/a 0,444444	d2 480	mm	Error : SW < 1.1 ! DIN 3996:2012
z1 2	mn 15,60	mm	Error : SH < 1.0 ! DIN 3996:1998
z2 30	da1 172	mm	Error : SH < 1.0 ! DIN 3996:2012
x2 0,3125	da2 522	mm	
b1 205 mm	pz 100,5	mm	
b2 132 mm	eta-z 0,905		
mx <mark>16</mark> mm	SH 2 1,313		
dm1 140 mm	SF 2 7,355		
gam.m <mark>12,875</mark> *	al.n 19,54	٠	
OK <u>H</u> elp		,	Aux. Image Aux. Images Close

ZAR3+: Lubricant database

For entering the lubricant viscosity at 40 $^{\circ}$ C and 100 $^{\circ}$ C, there is now a small lubricant database as input help.

M	< ►	M	<u>S</u> earch	Search <u>N</u> ex	t 1 /34	OK	
OIL_NAME	TYPE	V40	V100	INDEX	POUR	FLASH	SOURCE
SHC 150	1	150	22,2	176	-45	233	Mobil Gear
SHC 220	1	220	30,4	180	-39	233	Mobil Gear
SHC 320	1	320	40,6	181	-33	233	Mobil Gear
SHC 460	1	460	54,1	184	-27	234	Mobil Gear
SHC 680	1	680	75,5	192	-27	234	Mobil Gear
SHC 1000	1	1000	99,4	192	-24	234	Mobil Gear
GH 6-32	4	32	7	150	-45	220	Kluebersynth
GH 6-80	4	80	16	200	-35	280	Kluebersynth
GH 6-100	4	100	20	200	-35	280	Kluebersynth
GH 6-150	4	150	28	210	-35	280	Kluebersynth
GH 6-220	4	220	41	220	-30	280	Kluebersynth
GH 6-320	4	320	58	230	-30	280	Kluebersynth
GH 6-460	4	460	79	240	-25	280	Kluebersynth
GH 6-680	4	680	116	260	-25	280	Kluebersynth
GH 6-1000	4	1000	167	260	-25	280	Kluebersynth
GLYG 68	0	68	11,8	170	-30	265	Mobil Glygoy
GLYG 100	0	100	17,3	190	-30	265	Mobil Glygoy

ZAR3+: Diagram a = f (gamma_m)

In the worm gear, gamma_m is the pitch angle of the worm and the helix angle of the worm wheel. The helix angle changes the center distance, or gamma_m (beta2) is calculated for a given center distance.

beta 2 = gamma_m

beta 1 = summa - beta 2 = 90 ° - beta 2 = 90 ° - gamma_m

a0 = mn / 2 * (z1 / cos (summa - beta2) + z2 / cos (beta2))

The function can now be represented as a diagram a = f (gamma_m), either for "mn = const" or "mx = const".

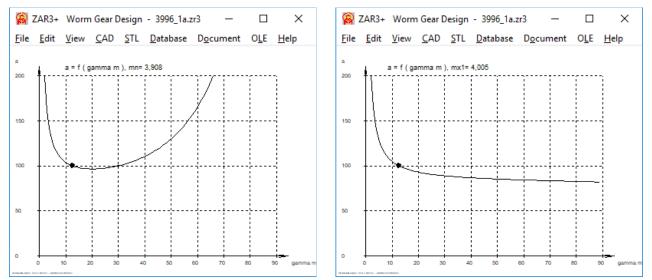
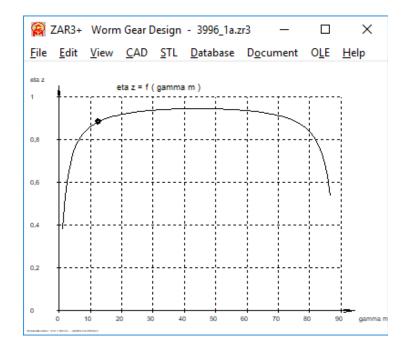
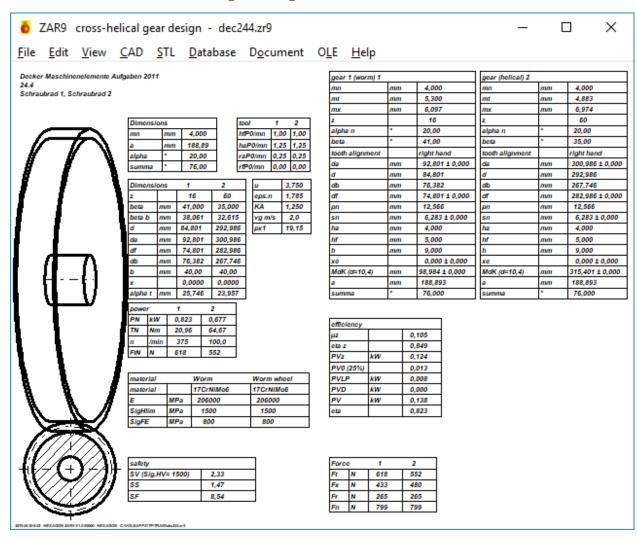




Diagram shows the smallest possible center distance, if mn remains constant. With worm gears, however, the axial modulus of the worm is normally specified, which corresponds to the tangential modulus of the worm wheel at 90 ° crossing angle (mx1 = mt2). Then mn = mt2 * cos (beta2) and a0 = mx1 / 2 * cos (beta2) * (z1 / cos (summa-beta2) + z2 / cos (beta2))

ZAR3+ Diagram eta = f (gamma_m)

The efficiency is also dependent on the helix angle. However, you can not increase the helix angle arbitrarily, otherwise the core diameter of the worm goes to zero.

ZAR9: software for cross-helical gear design

Soon we can provide a new software for cross-helical gear design. The dimensions of cross-helical gears are calculated similarly to worm gears, so that most dimensions for 90 ° axis angles can also be calculated with ZAR3 +. Instead of a line contact like a globoid worm wheel, there is only one point touch on the cross-helical gear. Therefore, in the cross-helical gear compared with a worm gear of the same dimensions, the load capacity is worse and the efficiency similarly poor. Incidentally, ZAR3 + can also be used to calculate a worm gear that is more similar to a pair of cross-helical gears: enter the same number of teeth z1 and z2 and gamma_m = 45 °, results in the same dimensions of worm and worm wheel. When created with a 3D printer, the worm and worm

wheel (as a helical wheel, not as a globoid wheel) are exactly the same. There are several types of cross-helical gears: worm and helical gear with 90 $^{\circ}$ axis angle as worm gear replacement, two cross-helical gear wheels with 90 $^{\circ}$ axis angle, or the same with an axis angle between 30 $^{\circ}$ and 90 $^{\circ}$.

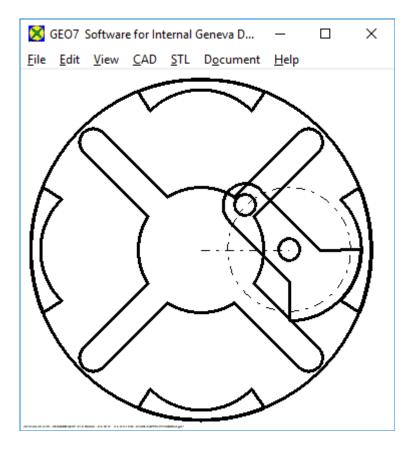
ZAR1+, ZAR3+, ZAR5, 67, 8, ZARXP, ZAR1W: Settings: z slice

Helical gears and worm gears are shown in layers. The layer thickness can now be configured under File $\$ Settings $\$ CAD. We suggest to configure the default layer thickness of your 3D printer as z_slice. Attention: If you reduce the layer thickness so that the STL model is displayed with smaller steps, the size of the STL file increases accordingly. In any case, the STL file of helical gears will be many times larger than that of spur gears. Helical gears and worms from the 3D printer can only be used to a limited extent, depending on the layer thickness, the slope is a step function with larger or smaller steps and corresponding unevenness. File $\$ Settings $\$ CAD:

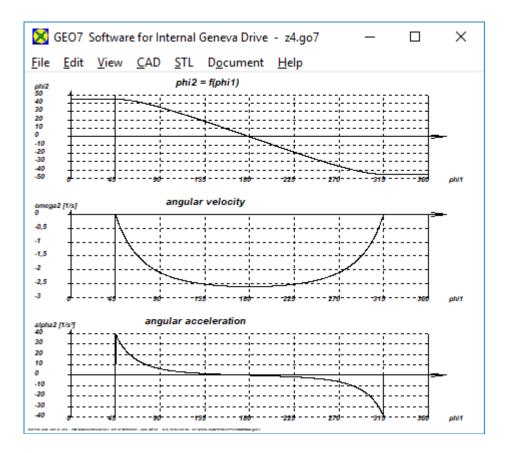
ZAR1W, ZAR1+: xe tolerance

The +/- tolerance of the generating profile shift factor xe had been displayed too large in the gear table. Since tolerance +/- from the mean value, half the value for the tolerance applies.

SR1 / SR1 +: Less warnings for missing database data for temperature dependency


When you enter a working temperature, you sometimes get warnings like "mat_p_re.dbf: material name?". This means that there are no material data for the temperature dependence of yield strength and Young's modulus. There are fields in the database for the values at 100 .. 700 ° C. If the entered working temperature is less than 100 ° C, these warnings will no longer appear in the future because at 100 ° C modulus of elasticity and yield strength change only slightly. The most important influencing factor is anyway the temperature expansion coefficient alphaT, and this one is known for all materials.

GEO4: create model with 3D printer


In addition to cams or cam discs, you can now also create plungers and a carrier plate as STL file and produce with 3D printer.

GEO7: Software for Internal Geneva Gears

GEO7 calculates stepper gear with internal Geneva wheel. Interior Maltese have a long switching time and a short rest time compared to external Maltese gears. In a 4-beem external Geneva gear, the switching angle is 90 ° and the locking angle is 270 °. In case of an internal Geneva drive, the reverse is true: switching angle 270 ° and locking angle 90 °.

Reverse STL direction

Under "File $\$ Settings $\$ CAD" (STL Dir invers) you can now reverse the direction of the STL-3D objects if your program to open the STL files displays the 3D object in the wrong color or reports the wrong direction.

L Enter limits or alagrams
STL dir invers
✓ Evec CAD App 2

Change Licensee name: 40 Euro

The name of the licensee is fixed in the program and can not be changed by you. For updates, the name of the licensee usually remains unchanged. If you want to change your company name in the program as part of an update, because the name has changed or the company was merged or acquired, please order the name change for a fee of 40 Euros (plus the update price). Otherwise, the name of the licensee will remain unchanged in the new version. Maximum 30 characters are possible.

Key code problem with Windows 10 or network version

If you always need new key codes for your network version if the server or volume has been replaced or volume settings modified, but the path remained the same, you can update to a version with permanent key code, but your program path must also remain permanent. When updating, please specify the network path (UNC path, no logical drive), e.g. \\ourserver659\HEXAGON\, then you get an update with permanent code that does not change anymore (if the path does not change). Then you need new key codes for the last time. License agreement then please also update with UNC path and copy back as a pdf file.

A similar problem exists for single-user licenses under Windows 10. For large Windows updates, Windows reduces the usable size of the hard disk in favor of an invisible Microsoft partition. The only solution is to install the software not on the system partition C:, but on another partition or hard disk. If your PC has an SSD disk and a large hard disk, do not install HEXAGON software on the SSD if Windows is installed there. Better install it on the large disk. Another option is to install HEXAGON software on an external hard drive. Then HEXAGON software remains on the external hard drive, even if computer changes, without needing new key codes.

fedwst.dbf material						- 🗆	
e <u>V</u> iew <u>H</u> elp							
	►I _	_ 3 /102					
NAME1	NAME2	NAME3	NAME4	G	E	DICHTE	RM0
Titan Grade 5 ST+age	spring temper	Ti-6Al-4V, ST	3.7165	44000	114000	4,42	
Titanium Grade 5	annealed	Ti-6Al-4V, annealed	3.7165	44000	114000	4,42	
Titanium Grade l	T199	3.7025	ASTM B348	40000	110000	4,5	
Ti 3-8-6-4-4, ST+age	AMS 4957 Beta-C	Ti-3Al8V6Cr4Mo4Zr	solution treat.+aged	39000	99000	4,82	
EN 10270-3-1.4462-S2	X2CrNiMoN22-5-3	Sandvik Springflex	UNS S322205/S31803	79000	205000	7,8	
EN 10270-3-1.4462-S3	X2CrNiMoN22-5-3	Sandvik SpringflexSH	UNS S322205/S31803	79000	205000	7,8	
Roeslau-Extra	High Carbon Wire	Music Wire		82000	206000	7,8	
	High Carbon Wire High-Tens.	Music Wire		82000	206000	7,8	

Did you	know	?	Show	database	sorted
---------	------	---	------	----------	--------

All databases can be sorted by any column by clicking with the right mouse button in the title field (here "DENSITY" or "DICHTE")

HEXAGON PRICE LIST 2019-05-01

PRODUCT	EUR
DI1 Version 1.2 O-Ring Seal Software	190
DXF-Manager Version 9.1	383
DXFPLOT V 3.2	123
FED1+ V30.9 Helical Compression Springs incl. spring database, animation, relax., 3D,	695
FED2+ V21.3 Helical Extension Springs incl. Spring database, animation, relaxiton,	675
FED3+ V21.1 Helical Torsion Springs incl. prod.drawing, animation, 3D, rectang.wire,	600
FED4 Version 7.7 Disk Springs	430
FED5 Version 16.2 Conical Compression Springs	741
FED5 Version 16.8 Nonlinear Cylindrical Compression Springs	634
FED7 Version 13.8 Nonlinear Compression Springs	660
FED8 Version 7.2 Torsion Bar	
	317
FED9 Version 6.3 Spiral Spring	394
FED10 Version 4.3 Leaf Spring	500
FED11 Version 3.5 Spring Lock and Bushing	210
FED12 Version 2.6 Elastomer Compression Spring	220
FED13 Version 4.2 Wave Spring Washers	228
FED14 Version 2.2 Helical Wave Spring	395
FED15 Version 1.6 Leaf Spring (simple)	180
FED16 Version 1.3 Constant Force Spring	225
FED17 Version 1.9 Magazine Spring	725
GEO1+ V7.3 Cross Section Calculation incl. profile database	294
GEO2 V3.2 Rotation Bodies	194
GEO3 V3.3 Hertzian Pressure	205
GEO4 V5.2 Cam Software	265
GEO5 V1.0 Geneva Drive Mechanism Software	218
GEO6 V1.0 Pinch Roll Overrunning Clutch Software	232
GEO7 V1.0 Internal Geneva Drive Mechanism Software	219
GR1 V2.2 Gear construction kit software	185
HPGL-Manager Version 9.1	383
LG1 V6.6 Roll-Contact Bearings	296
LG2 V3.0 Hydrodynamic Plain Journal Bearings	460
SR1 V23.4 Bolted Joint Design	640
SR1+ V23.4 Bolted Joint Design incl. Flange calculation	750
TOL1 V12.0 Tolerance Analysis	506
TOL2 Version 4.1 Tolerance Analysis	495
TOLPASS V4.1 Library for ISO tolerances	107
TR1 V6.0 Girder Calculation	757
WL1+ V21.3 Shaft Calculation incl. Roll-contact Bearings	945
WN1 V12.1 Cylindrical and Conical Press Fits	485
WN2 V10.1 Involute Splines to DIN 5480	250
WN2+ V10.1 Involute Splines to DIN 5480 and non-standard involute splines	380
WN3 V 5.5 Parallel Key Joints to DIN 6885, ANSI B17.1, DIN 6892	245
WN4 V 4.8 Involute Splines to ANSI B 92.1	276
WN5 V 4.8 Involute Splines to ISO 4156 and ANSI B 92.2 M	255
WN6 V 3.1 Polygon Profiles P3G to DIN 32711	180
WN7 V 3.1 Polygon Profiles P4C to DIN 32712	175
WN8 V 2.3 Serration to DIN 5481	195
WN9 V 2.3 Spline Shafts to DIN ISO 14	170
WN10 V 4.2 Involute Splines to DIN 5482	260
WN11 V 1.4 Woodruff Key Joints	240
WN12 V 1.1 Face Splines	256
WNXE V 2.2 Involute Splines - dimensions, graphic, measure	375
WNXK V 2.1 Serration Splines - dimensions, graphic, measure	230
WST1 V 10.2 Material Database	235
ZAR1+ V 26.3 Spur and Helical Gears	1115
ZAR2 V8.0 Spiral Bevel Gears to Klingelnberg	792
ZAR3+ V10.2 Cylindrical Worm Gears	620
ZAR4 V6.0 Non-circular Spur Gears	1610
ZAR4 V0.0 Non-circular Spor Gears	1355
Entro Virto Fidilotary Obaro	1000

ZAR6 V4.1 Straight/Helical/Spiral Bevel Gears	585
ZAR7 V1.7 Plus Planetary Gears	1380
ZAR8 V1.6 Ravigneaux Planetary Gears	1950
ZARXP V2.5 Involute Profiles - dimensions, graphic, measure	275
ZAR1W V2.2 Gear Wheel Dimensions, tolerances, measure	450
ZM1.V2.5 Chain Gear Design	326

PACKAGES	EUR
HEXAGON Mechanical Engineering Package (TOL1, ZAR1+, ZAR2, ZAR3+, ZAR5, ZAR6, WL1+, WN1, WN2+, WN3, WST1, SR1+, FED1+, FED2+, FED3+, FED4, ZARXP, TOLPASS, LG1, DXFPLOT, GEO1+, TOL2, GEO2, GEO3, ZM1, WN6, WN7, LG2, FED12, FED13, WN8, WN9, WN11, DI1, FED15, WNXE,	8,500
GR1)	
HEXAGON Mechanical Engineering Base Package (ZAR1+, ZAR3+, ZAR5, ZAR6, WL1+, WN1, WST1, SR1+, FED1,+, FED2+, FED3+)	4.900,-
HEXAGON Spur Gear Package (ZAR1+ and ZAR5)	1,585
HEXAGON Planetary Gear Package (ZAR1+, ZAR5, ZAR7, ZAR8, GR1)	3,600
HEXAGON Involute Spline Package (WN2+, WN4, WN5, WN10, WNXE)	1,200
HEXAGON Graphic Package (DXF-Manager, HPGL-Manager, DXFPLOT)	741
HEXAGON Helical Spring Package (FED1+, FED2+, FED3+, FED5, FED6, FED7)	2,550
HEXAGON Complete Spring Package (FED1+, FED2+, FED3+, FED4, FED5, FED6, FED7, FED8, FED9, FED10, FED11, FED12, FED13, FED14,, FED15, FED16, FED17)	4,985
HEXAGON Tolerance Package (TOL1, TOL1CON, TOL2, TOLPASS)	945
HEXAGON Complete Package (All Programs)	12,900

Quantity Discount for Individual Licenses

Licenses	2	3	4	5	6	7	8	9	>9
Discount %	25%	27.5%	30%	32.5%	35%	37.5%	40%	42.5%	45%

Network Floating License

Licenses	1	2	3	4	5	6	78	911	>11
Discount/Add.cost	-50%	-20%	0%	10%	15%	20%	25%	30%	35%
(Negative Discount means additional cost)									

(Negative Discount means additional cost)

Language Version:

- German and English : all Programs
- French: FED1+, FED2+, FED3+, FED4, FED5, FED6, FED7, FED9, FED10, FED13, FED14, FED15, TOL1, TOL2.
- Italiano: FED1+, FED2+, FED3+, FED4, FED5, FED6, FED7, FED9, FED13, FED14, FED17.
- Swedish: FED1+, FED2+, FED3+, FED5, FED6, FED7.
- Portugues: FED1+, FED17
- Spanish: FED1+, FED2+, FED3+, FED17

Updates:

Update prices	EUR
Software Update (software Win32/64 + pdf manual)	40
Software Update (software 64-bit Win + pdf manual)	50

Update Mechanical Engineering Package: 800 EUR, Update Complete Package: 1000 EUR **Maintenance contract** for free updates: annual fee: 150 EUR + 40 EUR per program

Hexagon Software Network Licenses

Floating License in the time-sharing manner by integrated license manager Individual licenses may not be installed in a network!

Conditions for delivery and payment

General packaging and postage costs for delivery on CD-ROM: EUR 60, (EUR 25 inside Europe) Delivery by Email or download (zip file, manual as pdf files): EUR 0. Conditions of payment: bank transfer in advance with 2% discount, or by credit card (Master, Visa) net.

Key Code

After installation, software has to be released by key code. Key codes will be sent after receipt of payment.

HEXAGON Industriesoftware GmbH

Stiegelstrasse 8D-73230 KirchheimTel. +49 7021 59578,
Mühlstr. 13Fax +49 7021 59986Kieler Strasse 1AD-10115 BerlinMühlstr. 13D-73272 NeidlingenMobile: +49 163 7342509E-Mail: info@hexagon.deWeb: http://www.hexagon.de