HEXAGON - Infobrief 166

von Fritz Ruoss

FED14: 3D Mittellinie (Centerline) von Schraubenwellfedern

Die Mittellinie der Schraubenwellfeder kann man jetzt in x,y,z Koordinaten ausgeben oder als 3D Zeichnung in CAD übernehmen als DXF, IGES oder STEP Datei.

FED14: STL Export

Ein 3D-Modell der Schraubenwellfeder kann man jetzt auch als STL-Datei ausgeben.

FED1+: Temperaturtabelle

FED1+ Druckfederb	erechnung na	ich EN 1390	6-1 - daiker.fe	d 📃 🗖
atei <u>B</u> earbeiten <u>A</u> nsich	nt <u>C</u> AD <u>S</u> TL	Datenban <u>k</u>	D <u>o</u> kument O <u>L</u> E	<u>H</u> ilfe
	44,4°C	20°C	0°C	100°C
G [MPa]	81500	82000	82410	80360
F1 [N]	360	362,3	364, 1	355
F1, 48h [N]	349,6	356,4	358,1	331,7
F2 [N]	541,2	544,5	547,3	533, 7
F2, 48h [N]	507,0	522,9	525,2	464,5
R [N/mm]	36,23	36,45	36,63	35,72

Eine Tabelle mit 4 verschiedenen Temperaturen wird jetzt angezeigt unter Ansicht -> Temperatur:

- Arbeitstemperatur
- 20°C
- Temperatur von (aus Bearbeiten -> Fertigungszeichnung)
- Temperatur bis (aus Bearbeiten -> Fertigungszeichnung)

Eingetragen sind die temperaturabhängigen Daten Schubmodul G, Federkräfte F1, F2, sowie F1,48h und F2,48h nach Relaxation, und die Federrate R.

Die Tabelle wird auch in der Quick4-Ansicht angezeigt, wenn die Arbeitstemperatur nicht 20°C ist. In der Quick3-Ansicht wird die Federkraft F2,48h nur noch angezeigt, wenn unter "Bearbeiten->Fertigungszeichnung" entweder "Federn ungesetzt liefern" oder "frei" gewählt wurde. Wenn die Feder vorgesetzt wurde, ist die Relaxation wesentlich geringer und wird deshalb in der Quick3 und Quick4 Ansicht nicht mehr angezeigt.

FED3+: Dorn- und Hülsendurchmesser

Nach DIN 2194 wird der Prüfdorndurchmesser DP berechnet. Der maximale Dorndurchmesser und der minimale Hülsendurchmesser wurden bisher ebenfalls nach dieser Formel berechnet. Die Grenzwerte werden ab jetzt aber ohne die 5% Sicherheit berechnet, dafür zusätzlich mit der Toleranz des Drahtdurchmessers: Ddmax2 = Di2 – AD – Ad (Dorn bis alpha2) und Ddmaxn = Din – AD – Ad (Dorn bis alpha n)

DHmin = De + AD + Ad (Hülse)

Den Dorndurchmesser mit Toleranz kann man auch eingeben unter Bearbeiten->Fertigungszeichnung. Hier wurde die Vorauswahl erweitert: man kann wählen unter Dd<=DP, Dd<=Ddmax2, Dd<=Ddmaxn, oder unter ".." Dorndurchmesser und Toleranz eingeben".

FED4: Federrate bei Tellerfederpaketen

Mit FED4 kann man sowohl Tellerfedern als auch Tellerfederpakete berechnen. Für Anzahl der Federpakete i > 1 waren die Federkräfte korrekt, aber die Federrate nicht berechnet worden, das wurde korrigiert (i = Anzahl Federpakete, n = Federn je Paket).

```
Die Federkraft von Federpaketen ist gegenüber der Einzeltellerfeder F = Fi * n
```

Bei der Federrate R = Ri * n / i

Bei der Federarbeit: W = Wi * n * i

Für den Hinweis bedanke ich mich bei Herrn Erhardt von Hilti.

TR1: Quick-Eingabe für Trägerberechnung

In der Quick-Eingabe kann man alle Abmessungen, Last, Werkstoff und Lagerung in einem einzigen Dialogfenster eingeben.

IRI - Tragerberechnung - Quick Input					
Disclay Draft	Zeichnungsname Girder	Zeich	nungsnummer 1	Radialkraft Fr	
	Zeichnungsname 2		- ,	<+ + -	Copy Paste < ?
Hite 1_BSP : Anwendungsbeispiel aus Demoi	Zeile 1 Applic	ation Example			Text
	Zeile 2			1 1800 1180	F 1
Profil Abmessungen				2 1000 1180	
<+ + - Copy Pastel < ?		Werkstoff			
	Profil	Werkstoff	AIMg5F32	C Streckenlast a	
1 0,00 -33,00 0		Elastizitätsmodul E	70000 MPa		Convil Postol (2)
2 1,33 -33,00 82,05		Schubmodul G	27000 MPa		
4 9.82 -7.76 -82.05		Dichte	2,7 kg/dm ²	g [N/mm] x1 [mm] 2	(2 [mm] Text 1030
5 15,47 2,85 0					
6 124,53 -2,85 -82,05 7 120,18 -7,76 0		All	Mg5F32		
8 133,02 -28,09 82,05	∠eichnung				
9 138,67 -33,00 0				Biegemoment Mb	
11 140,00 33,00 0				<u><++-</u>	Copy Paste < ?
12 138,67 33,00 82,05 🗨				Mb [Nm] x [mm]	fext
Laenge Träger 1200 mm					
Lager					
Lagerungsart	A. Festlager			Axialkraft Fx	
Feste Einspannung	Lagerstellen x 0 mi	m		<+ + -	Copy Paste < ?
F	ederkonstante R N.	/mm		Ex [N] x [mm]	Text
Kra	ftangriffswinkel w *			1 1300 1180	
Mittlerer Wälzba	hndurchmesser dw mi	m			
			Berechnungsmethode	Fehler : Berechnung erfolgreich ohn	e Fehlermeldungen
			Reset		
				I	
	OK Abbre	chen Hilfetext Hilfe	ebild mm <> inch	Calc	

ZAR2: Quick-Eingabe für Kegelradgetriebe mit Klingelberg-Zyklopalloidverzahnung

In der neuen Quick-Eingabe kann man alle Abmessungen, Toleranzen, Einbaumaße, Werkstoff, Antriebs- und Festigkeitsdaten in nur einem Dialogfenster eingeben.

ZAR2 - Kegelradberechnung Quick Input				
	Rad 1	Rad 2	Werkstoff Rad 1	Werkstoff Rad 2
Display Quick 3	Zeichnungsname Pinion	Zeichnungsname Gear	Werkstoffdatenbank	Werkstoffdatenbank
Hitelold ABMESS : Verzahnungsmaße eines Zyklo-Palloid-Radp	Zeichnungsnummer 000000	Zeichnungsnummer 000000	18CrNiMo7-6 (1.6587)	42CrMo4V (1.7225)
	Zeichnungsname 2	Zeichnungsname 2	Signa-EE 620 MPa	Sigma-EE 770 MPa
Abmessungen	Text 1 Application example			
O Nachrechnung	Text 2 for demo version			Sigma-Him 1070 MFa
	Bad 1	- Bad 2	HB 650 HB ?	HB 550 HB ?
Vorauslegung	? Einbaumaß tB1 382.4 mm <	Einbaumaß tB2 100.6 mm <	E 210000 MPa	E 210000 MPa
O n Drehzahl n1 1000 1/min			μ 0,3	μ 0,3
© T Nenndrehmoment T1 5000 Nm	Hilfsebenenabstand tHT 107,8 mm <	Hillsebenenabstand tH2 25,07 mm <	rho 7,85 kg/dm3	rho 7,85 kg/dm3
C P Namekintura P 5236 ktur	Bohrungsdurchmesser dB1 0 mm <	Bohrungsdurchmesser dB2 0 mm <	Einsatzstahl 💌	Vergütungs- oder Nitrierstahl 💌
	-		einsatzgehaertet (Eh)	gasnitriert (NT)
Getriebe-Achswinkel summa 90 deg <	Verzahnungsqualität nach DIN 5	5 🗾 5 💌		
Übereetzungeverhältnis u-n1/n2 6	Drehzahl, Drehmoment, Nennleistung	Festigkeit		
	z2/z1 = 54 / 9 = 6	Bad 2	Rad 1	Rad 2
Teilkreisdurchmesser d02 760 mm <			Zahneingriffe/Umdrehung e 1	1 e. Np ?
Zahnbreite b 110 mm <	On Drehzahl n 1000 11	66,7 1/min Anzahl d	er Lastwechsel/Periode Np 0	
💿 mn Normalmodul mn 10,5 mm	Nenndrehmoment T 5000 3	0000 Nm < mittlere	Rauhtiefe Zahnflanke RzZ 5	5 μm
O Bm Spiralwinkel Bm 29.5 deg	Nennleistung P 523,6 5	23,6 kW mittl	ere Rauhtiefe Zahnfuß RzY 5	5 μm
			Öhriskesitiit hei 40	rc 90 mm²/a Visko *C
Ritzelzähnezahl z1 9 <		0l-Betriebstemperatur [50	*C Olviskosikal bei 40	
Zähnezahl z2 54 <	Berechnungsmethode nach	DIN 3991 Anwendungsfaktor	КАН 1 КАГ 1	KAS 1 KA?
		Schmierung	Herstellung Antrieb	Lagerung
E-Mar. Übersetzungsverhältnis I		Tauchschmierung 💌	fertiggefräst 💌 1 treibt 2 💌	beide beidseitig
Warnung: SH < 1.0 ! (0,92) Warnung: SH < 1.0 ! (0,73)		Anwendung	Flugzeug 🔽 Kop	frücknahme Ca 🛛 μm 🧹
Fehler : Pitting				
			vaahan Hilfa Hilfahiid	

ZAR2, ZAR6: Ansicht Festigkeitsberechnung mit Formeln und Faktoren

Ähnlich wie in ZAR1+ kann man jetzt auch in ZAR2 und ZAR6 die wichtigsten Formeln, Zwischenwerte und Faktoren der Festigkeitsberechnung nach DIN 3991 auf einer Bildschirmseite ausdrucken.

ZAR6: Quick-Eingabe für Kegelradgetriebe

In der neuen Quick-Eingabe kann man Abmessungen, Toleranzen, Einbaumaße, Werkstoff, Antriebs- und Festigkeitsdaten in nur einem Dialogfenster eingeben.

ZAR1+, ZAR5, ZAR7, ZAR8: Meßkreis nach xe-Einstellungen eingezeichnet

In der Zahnlückenzeichnung war der Meßkreis immer in Toleranzmitte gezeichnet, dies ist auch die Grundeinstellung für die Zeichnungsdarstellung. Wenn man unter CAD->Einstellungen andere Erzeugungs-Profilverschiebungsfaktoren xe einstellte, änderte sich die Zeichnung, aber die Position der Meßkreise blieb gleich. Jetzt wird das Prüfmaß für die eingegebene Einstellung berechnet und der Meßkreis entsprechend eingezeichnet.

ZAR1+, ZARXP, ZAR1W,WN2+,WN4,WN5,WN10,WNXE: Button "Zahnlücke + DM"

Zum Testen von verschiedenen Meßkreisdurchmessern kann man jetzt gleich im Eingabefenster die Zahnlücke mit eingezeichnetem Meßkreis zeichnen lassen. Der Vorschlagswert für DM nach DIN 3960 paßt oft nicht bei Verzahnungen mit geringer Zahnhöhe, hier muß man probieren. Im Bild erkennt man auch, ob eine abgeplattete Meßrolle verwendet werden muss.

ZARXP, WNXE: Grenzwerte von Kugel- und Rollenmaß

Die Eingabe von Kugel- und Rollenmaß zur Ermittlung der Profilverschiebung wurde verbessert. Bei Innenverzahnung wurde der Grenzbereich vergrößert, und bei Überschreitung der Eingabegrenzen erscheinen Fehlermeldungen MR>MRmax, MR<MRmin, MK>MKmax, MK<MKmin. Der Grenzwert wird in Klammern angezeigt. Bei Innenverzahnung sind die Vorzeichen zu beachten (-2 ist kleiner als –1).

Auch das Fehlerfeld wurde verbessert: Mit einem Mausklick auf die Fehlermeldung werden Beschreibung und Abhilfemöglichkeiten angezeigt.

FED1+, SR1+, WL1+, FED10: Fehlerfenster Quick-Eingabe

Im Quick-Eingabefenster werden jetzt alle Fehlermeldungen untereinander angezeigt. Wenn man auf den Fehler klickt, werden Ursache und Abhilfe wie ein Hilfetext eingeblendet.

ZAR1+, ZAR1W, ZARXP: Profil kontinuierlich gezeichnet

Durch das Einfügen der Zähne als Block wurde ein Zahnrad bislang nicht in einem Strich gezeichnet, das wurde geändert. In der Zeichnung sieht man keine Änderung, aber bei Konvertierung in CNC-Code kann das Profil jetzt ohne Optimierung übernommen werden. Mit unserer DXF-Manager Software kann man das Zahnprofil in eine einzige DXF-Datei mit einer einzigen Polylinie konvertieren, und so z.B. in GEO1+ übernehmen zur genauen Berechnung von Querschnittsfläche, Masse und Massenträgheitsmoment.

ZAR1W: Quick-Eingabe

ZAR1W berechnet alle Abmessungen und Toleranzen eines Zahnrads. Anders als in ZAR1+ muss man in ZAR1W kein Zahnradpaar sondern nur ein Zahnrad eingeben. Kein Achsabstand, keine Festigkeitsberechnung. ZAR1W ist gut geeignet für Zahnradherstellung, mit wenigen Eingaben bekommt man alle Herstelldaten und eine Profilzeichnung. Neu in ZAR1W ist die Quick-Eingabe mit allen Eingabedaten in einem Dialogfenster. Mit "Calc" Button oder "Enter" wird die Verzahnung neu berechnet und die Ergebnisgrafik aktualisiert.

📶 ZAR1W - Zahnradgeometrie Quick Input		
Display Quick 3	Text 1 application exam	ple
Hilfe <u>b</u> id	Text 2 for high tooth ge	ar
Fehler: Berechnung erfolgreich ohne Fehlermeldungen	Zeichnungsname high too Zeichnungsnummer 73	th gear
	Zeichnungsname 2	
Abmessungen	Bezugsprofil	Verzahnungsqualität
Eingriffswinkel alpha	andere	Verzahnungsqualität ISO 1328 6
Schrägungswinkel beta 30 Grad	? Datenbank	Zahndickentoleranz Tsn (DIN 3967) 25 💌
Normalmodul mn 2,05 🚔 mm 12,39 1/in	Protuberanz Konfkantenbruch	Zahndickenabmaß Asne (DIN 3967) 🕴 💌
Zähnezahl z 40 +/-	haP0/mp 1.83	Asne -0.019 Asni -0.059 mm (d = 94.69)
Zahnbreite b 23 mm <	hfP0/mn 1,3	Asrr<→ xe
Profilverschiebungsfaktor x 0,19999 < x min < x05	al.kP0 37,5 deg <	Bearbeitungszugabe q 0.0861 + 0.0861 mm <
Kopfkürzung ?	hFfP0/mn 0,7 <	- Priifmaße
C kmn 0,613009 mm	al.prP0 12,5 deg <	Meßzähnezahl k 7 🧹
⊙ da 100,694 mm	prP0/mn 0,063 <	Kudel-und Bollendurchmesser DM
	raP0/mn 0,375 <	
Flankenrichtung frei	rfP0/mn 0 <	? Zahnlücke + DM
Bohrung dB 0 mm <		
	OK Abbrechen	Hilfe Hilfebild mm <> inch Calc

ZAR1W: Zusätzliche Tabellen in Quick4

In der Quick4-Ansicht wurden 2 Tabellen mit zusätzlichen Abmessungen (Nennmaß, Größtmaß, Kleinstmaß) ergänzt.

ZA	R1W - Zahi	nradgeoi	metrie	- HIG	ihto	OT.z1w								_ 🗆 ×
<u>D</u> atei	<u>B</u> earbeiten	<u>A</u> nsicht	<u>C</u> AD	<u>s</u> tl	Date	nban <u>k</u> D	ok	ument	OLE	<u>H</u> ilfe				
	,							Zahnweit	e		W max	41,664	41,319	Normalz ahndicke
	~	ు						Zahnweit	e:		W min	41,491	41,281	Oberes Zahndick
														Unteres Zahndick
	\sim								1	nom	min	ma	IX	Zahnkopfdicke
	<u>~</u> \ _							Asn		0,000	-0,059	-0,0)19	Zahnbreite
	\sim							sn		3,479	3,420	3,	460	Ersatz-Zähnezah
\mathbb{N}	}							st		4,017	3,949	3,	995	Verzahnungstoler
11 ~	-			alo	13	17 530'	1	san		1,283	0,828	1,	257	Cumulat, pitch to
_				alpi	ha t	20 90'10"		sat	\rightarrow	1,481	0,956	1,	452	Single pitch tolera
				bet	3	20 0 18		xe	0.	20000	0,15436	0,1	8530	Profile tolerance,
				bet	а а К	20 920'50"		q		0,086	0,086	0,1	72	Profile form tolera
					a U	6 440		xev	0	,20000	0,32497	0,4	6464	Profile slope toler
L				nt		7 437		dw	\rightarrow	96,986	94,685	5 94	4,685	Helix tolerance, t
£.				nht		6 988		df	-	88,002	88,515	5 89	9,087	Helix form tolerar
6	_			pet		6,988		dFf		90,871	90,762	2 90),836	Helix slope tolera
la .	Æ			ner		6 142		da		101,920	100,12	1 10	0,694	Single flank comp
1000				p.c.		0,112	1	dFa			99,707	7 10	0,694	Sing.flank.comp.t
	- 40							h		5,803	5,517	6,	090	Adjacent pitch dit
														Runout tolerance
٢	<u>\</u>													

HPGL-Manager, DXF-Manager: DXF Polyline

Für die Konvertierung eines Profils in DXF kann man jetzt die neue Option "DXF Polyline?" ankreuzen, dann wird die ganze Zeichnung als DXF-Datei bestehend aus nur 1 Polylinie gespeichert. Das macht nur Sinn, wenn die Zeichnung ein zusammenhängendes Profil ist, z.B. ein Zahnrad aus ZAR1+, wo ein Zahn als Block definiert ist, der dann z mal eingefügt wird. Mit Konvertierung von DXF in DXF werden die Blöcke aufgelöst und das Zahnprofil als 1 Polylinie gezeichnet. Anwendungsmöglichkeiten: CNC-Bahn, in CAD laden und extrudieren 3D, in GEO1+ importieren für Berechnung Querschnitt und Trägheitsmomente.

Wenn man die von ZAR1+ erzeugte Zahnrad-DXF-Datei mit Blockdefinitionen in GEO1+ importiert, wird ein Zahn angezeigt und berechnet. Das ganze Zahnrad erhält man, wenn man die mit dem DXF-Manager als 1 Polylinie konvertierte DXF-Datei importiert.

GEO1+: Spiegeln und Kopieren

Unter "Transform." kann man die eingegebenen Querschnitts-Koordinaten verschieben, drehen, spiegeln, und den Richtungssinn umkehren. Jetzt gibt es noch eine zusätzliche Option "Spiegeln und kopieren". Das unterstützt die Eingabe von symmetrischen Profilen. Wenn Sie eine Hälfte des Querschnitts konstruiert haben, können Sie die andere Hälfte spiegeln und kopieren.

GEO1+: STL-Datei aus mehreren GEO1-Dateien erstellen

<mark>GEO</mark> ile Be	1+ arbeiten Ansicht								
<+	mm <> in	ich	Calc						
i	Filename	Z0 [mm]	Z1 [mm]	DX	DY	phXY	ScaleX	ScaleY	Dir
1	H:\APPS\TP\TRAINrat.go	0	9,6	0	0	0	15,8	15,8	+
2	H:\APPS\TP\TRAINrat.go	0	8,4	0	0	0	13,2	13,2	-
3	H:\APPS\TP\TRAIN\d1.go1	0	8,4	0	0	0	4,7	4,7	-
4	H:\APPS\TP\TRAIN\d1.go1	0	8,4	0	0	0	6,45	6,45	+
5	H:\APPS\TP\TRAIN\d1.go1	9,6	11,4	4	4	0	4,9	4,9	+
6	H:\APPS\TP\TRAIN\d1.go1	9,6	11,4	-4	4	0	4,9	4,9	+
7	H:\APPS\TP\TRAIN\d1.go1	9,6	11,4	-4	-4	0	4,9	4,9	+
8	H:\APPS\TP\TRAIN\d1.go1	9,6	11,4	4	-4	0	4,9	4,9	+

Unter "Bearbeiten->3D Layer" kann man jetzt bis zu 100 GEO1-Querschnittsdateien wählen und unter Angabe von Höhe und Position schichtweise zusammenfügen. Daraus kann man schnell und ohne CAD eine STL-Datei für 3D-Drucker erstellen. Für ein Zahnrad mit DIN 5480-Aufnahme braucht man z.B. 2 Dateien: das Zahnprofil aus ZAR1+ oder ZAR1W oder ZARXP, dann noch das Zahnnabenprofil aus WN2 oder WN2+ oder WNXE.

Für die verwendeten Elemente kann man Maßstab und Richtung angeben. Das ist praktisch, so kann man z.B. einen Kreis mit 1mm Durchmesser verwenden für alle Zapfen und Bohrungen, weil der Durchmesser als Maßstab eingegeben wird. Mit Richtung "+" als Zapfen und "-" als Bohrung. Beispiel: Legostein aus nur 2 Grundelementen: Kreis (6x) und Quadrat (2x).

SR1: Warmstreckgrenze

Wenn man für die Schraubenberechnung eine Arbeitstemperatur eingibt, werden Zugfestigkeit Rm, Streckgrenze Rp0.2 und zulässige Flächenpressung pG für Arbeitstemperatur aus der Datenbank unter "Datenbank\Werkstoff Schraube/Platten\Rp0.2=f(T)" verwendet. Falls der gewählte Werkstoff nicht in der Datenbank gefunden wird, verwendet SR1 folgende Formel für die Berechnung der Warmstreckgrenze: $Rp(T) = Rp^*(1.018-T/1120)$

Zugfestigkeit und zulässige Flächenpressung bei Betriebstemperatur werden mit demselben Faktor berechnet:

Rm(T) = Rm20*Rp(T)/Rp20pG(T) = pG20*Rp(T)/Rp20.

Alle Programme: Bildschirmgrafik zoomen mit Mausrad

Anstelle der Tasten + und – kann man jetzt auch das Mausrädchen zum vergrößern und verkleinern der Bildschirmgrafik verwenden.

Tip: DXF, IGS, STP, STL-Dateien direkt öffnen

Wenn unter "Datei -> Einstellungen -> CAD" "Exec CAD App?" angekreuzt ist, wird nach Erzeugen einer CAD- oder STL-Datei automatisch das zugeordnete Programm aufgerufen und die Datei geöffnet. Wenn der Dateiendung (DXF, IGS, STP, STL, TXT) keine Anwendung zugeordnet bzw. installiert ist, kommt eine Meldung wie "Die Datei kann nicht geöffnet werden" oder "kein Zertifikat". Dann entfernen Sie den Haken an der Stelle.

Die Voreinstellung für den CAD Ordner, in dem die DXF, IGS, STP und STL Dateien gespeichert werden, kann man unter "Datei->Einstellungen->Directories" konfigurieren.

Tip: Feder-Vergleichsberechnung mit gleichem Schubmodul

Bei den Federprogrammen ist der Schubmodul der Federstähle DM,DH,SM,SH G=82000MPa. Laut EN 10270-1 und EN 13906 sind es 81500 MPa, deshalb gibt es geringe Abweichungen. Aufgrund jahrzehntelanger Erfahrung ist G=82000MPa genauer als der EN-Wert. Um für Vergleichsberechnungen den Schubmodul mit G=81500MPa zu berechnen, gibt es verschiedene Möglichkeiten:

- 1. Bearbeiten\Werkstoff: Auswahl "andere...": G=81500 eingeben
- 2. Bearbeiten\Anwendung: Betriebstemperatur 44,4 °C eingeben

3. Datenbank\fedwst (Browse): Datenbank erweitern (kopieren mit Bearbeiten\Append, dann G ändern)

Punkt 3 ist aber weniger zu empfehlen: Bei einem späteren Update wird Ihre geänderte fedwst.dbf überschrieben.

Abweichungen zu der Norm gibt es auch bei Federdraht nach EN 13906-2: Laut Norm G=79500 MPa. In der FEDWST-Datenbank zutreffend für FDC, FDCrV und FDSiCr. Der Schubmodul für VDC ist etwas höher und für VDCrV und VDSiCr etwas niedriger als der Einheitswert in der Norm.

Tip: Voreinstellungen speichern in NULL-Datei

Bevorzugte Werkstoffe, Toleranzen, usw. können Sie in einer NULL-Datei speichern, das geht bei allen Programmen.

Beispiel: In SR1 soll bevorzugt die Datenbank mat_p_1.dbf für Klemmstücke und Werkstoff 10.9 für Schrauben voreingestellt sein, sowie Reibungskoeffizient 0.1 für Kopf- und Gewindereibung. Dann beginnen Sie eine neue Berechnung, geben diese Daten und eine erste Klemmplatte ein, und speichern dann mit Dateinamen "null". Wenn das Programm gestartet wird, lädt es automatisch die Datei null.sr1, falls vorhanden.

HEXAGON Preisliste vom 1.1.2018

EINZELPLATZLIZENZEN	EUR
DI1 Version 1.2 O-Ring Software	190,-
DXF-Manager Version 9.1	383,-
DXFPLOT Version 3.2	123,-
FED1+ V29.8 Druckfederberechnung mit Federdatenbank, Relaxation, 3D, Rechteckdraht, Animat.	695,-
FED2+ V20.5 Zugfederberechnung mit Federdatenbank, Relaxation, Rechteckdraht,	675,-
FED3+ V 19.1 Schenkelfederberechnung	480,-
FED4 Version 7.3 Tellerfederberechnung	430,-
FED5 Version 15.7 Kegelstumpffederberechnung	741,-
FED6 Version 16.3 Progressive Zyl. Druckfedern	634,-
FED7 Version 13.3 Nichtlineare Druckfedern	660,-
FED8 Version 7.0 Drehstabfeder	317,-
FED9 Version 6.0 Spiralfeder	394,-
FED10 Version 4.1 Blattfeder beliebiger Form	500,-
FED11 Version 3.3 Federring und Spannhülse	210,-
FED12 Version 2.4 Elastomerfeder	220,-
FED13 Version 4.0 Wellfederscheibe	228,-
FED14 Version 2.0 Schraubenwellfeder	395,-
FED15 Version 1.4 Blattfeder, rechteckig	180,-
FED16 Version 1.1 Konstantkraftfeder	225,-
FED17 Version 1.3 Magazinfeder	725,-
GEO1+ V7.0 Querschnittsberechnung mit Profildatenbank	294
GEO2 V2.6 Massenträgheitsmoment rotationssymmetrischer Körper	194,-
GEO3 V3.3 Hertz'sche Pressung	205,-
GEO4 V4.2 Nocken und Kurvenscheiben	265,-
GEO5 V1.0 Malteserkreuztrieb	218,-
GEO6 V1.0 Klemmrollenfreilauf	232,-
GR1 V2.0 Getriebebaukasten-Software	185,-
HPGL-Manager Version 9.1	383,-
LG1 V6.6 Wälzlagerberechnung m. Datenbank	296,-
LG2 V2.2 Hydrodynamische Radial-Gleitlager nach DIN 31652	460,-
SR1 V22.8 Schraubenverbindungen	640,-
SR1+ V22.8 Schraubenverbindungen incl.Flanschumrechnung	750,-
TOL1 Version 12.0 Toleranzrechnung	506,-
TOL2 V4.0 Toleranzrechnung für Baugruppen	495,-
TOLPASS V4.1 Auslegung von ISO-Passungen	107,-
IR1 V5.0 Trägerberechnung	757,-
WL1+ V21.0 Wellenberechnung mit Wälzlagerauslegung	945,-
WN1 Version 12.0 Auslegung von Zylinder- und Kegelpreisverbänden	485,-
WN2 Version 10.1 Paßverzahnungen mit Evolventenflanken nach DIN 5480	250,-
WN2+ Version 10.1 Paßverzahnungen mit Evolventenflanken DIN 5480 und Sonderverzahnungen	380,-
WN3 Version 5.4 Paßfederverbindungen nach DIN 6892	245,-
WN4 Version 4.7 SAE-Paßverzahnungen mit Evolventenflanken nach ANSI B92.1	276,-
WN5 Version 4.7 Palsverzahnungen mit Evolventenflanken nach ANSI B92.2M und ISO 4156	255,-
WN6 Version 3.0 Polygonprofile P3G nach DIN 32711	180,-
WN7 Version 3.0 Polygonprofile P4C nach DIN 32712	1/5,-
WN8 Version 2.2 Kerbzahnprofile nach DIN 5481	195,-
WN9 Version 2.2 Keilwellenprofile nach DIN ISO 14, DIN 54/1, DIN 54/2	170,-
WN10 Version 4.2 Palsverzahnungen mit Evolventenflanken nach DIN 5482	260,-
WN11 Version 1.3 Scheibenfederverbindungen DIN 6888	240,-
WNXE Version 2.1 Palsverzahnungen mit Evolventenflanken – Abmessungen, Grafik, Prufmalse	375,-
VVINXK Version 2.0 Paisverzahnungen mit Kerbflanken – Abmessungen, Grafik, Prüfmaße	230,-
VVS11 V10.2 Werkstoffdatenbank St+NE-Metalle	235,-
ZAR1+ Version 26.1 Zahnradgetriebe mit Gerad- und Schragstirnradern	1115,-
ZARZ V8.0 Kegelradgetriebe mit Klingelnberg Zyklo-Palloid-Verzahnung	/92,-
ZAR3+ V9.0 Zylinderschneckengetriebe	620,-
ZAR4 V5.2 Unrunde Zahnrader	1610,-
ZAR5 V11.5 Planetengetriebe	1355,-
ZAR6 V4.0 Kegelradgetriebe gerad-/schrag-/bogenverzahnt nach Gleason	585,-
ZAR/ V1.4 Plus-Planetengetriebe	1380,-

ZAR8 V1.4 Ravigneaux-Planetengetriebe	1950,-
ZARXP V2.3 Evolventenprofil - Berechnung, Grafik, Prüfmaße	275,-
ZAR1W V2.0 Zahnradabmessungen, Toleranzen, Prüfmaße, Grafik	450,-
ZM1 V2.5 Kettengetriebe und Kettenräder	326,-

PAKEIE	EUR
HEXAGON-Maschinenbaupaket (TOL1, ZAR1+, ZAR2, ZAR3+, ZAR5, ZAR6, WL1+, WN1, WN2+, WN3,	
WST1, SR1+, FED1,+, FED2+, FED3+, FED4, ZARXP, TOLPASS, LG1, DXFPLOT, GEO1+, TOL2, GEO2,	8.500,-
GEO3, ZM1, WN6, WN7, LG2, FED12, FED13, WN8, WN9, WN11, DI1, FED15, WNXE, GR1)	
HEXAGON Maschinenbau-Basispaket (ZAR1+, ZAR3+, ZAR5, ZAR6, WL1+, WN1, WST1, SR1+,	1 900 -
FED1,+, FED2+, FED3+)	4.300,-
HEXAGON-Stirnradpaket (ZAR1+ und ZAR5)	1.585,-
HEXAGON-Planetengetriebepaket (ZAR1+,ZAR5, ZAR7, ZAR8, GR1)	3.600,-
HEXAGON-Zahnwellenpaket (WN2+, WN4, WN5, WN10, WNXE)	1.200,-
HEXAGON-Grafikpaket (DXF-MANAGER, HPGL-MANAGER, DXFPLOT)	741,-
HEXAGON-Schraubenfederpaket (best. aus FED1+, FED2+, FED3+, FED5, FED6, FED7)	2.550,-
HEXAGON-Toleranzpaket (best. aus TOL1, TOL1CON, TOL2, TOLPASS)	945,-
HEXAGON-Komplettpaket (alle Programme von Maschinenbaupaket, Grafikpaket, Federpaket,	12.900,-
Toleranzpaket, Stirnradpaket, Zahnwellenpaket, Planetengetriebepaket, TR1, FED8, FED9,	
FED10, GEO4, ZAR4, WN4, WN5, FED11, WN10, ZAR1W, FED14, WNXK, FED16, FED17,	
GEO5 GEO6)	

Rabatt für Mehrfachlizenzen:

Anz.Lizenzen	2	3	4	5	6	7	8	9	>9
Rabatt %	25%	27.5%	30%	32.5%	35%	37.5%	40%	42.5%	45%

Aufpreis / Rabatt für Floating-Netzwerklizenz:

Anz.Lizenzen	1	2	3	4	5	6	78	911	>11
Rabatt/Aufpreis	-50%	-20%	0%	10%	15%	20%	25%	30%	35%

(negativer Rabatt bedeutet Aufpreis)

Updates	EUR
Update für Win32/64 (als zip-Datei mit pdf-Handbuch)	40,-
Update 64-bit Windows	50,-

Update Maschinenbaupaket: 800 EUR, Update Komplettpaket: 1000 EUR **Wartungsvertrag** für kostenlose Updates: 150 EUR + 40 EUR je Programm pro Jahr

• Upgrades:

Bei Upgrades auf Plus-Versionen oder von Einzelplatz auf Netzwerk oder von Einzelprogrammen auf Programmpakete wird der Kaufpreis der ersetzten Lizenz zu 75% angerechnet.

• Netzwerklizenzen:

Software wird nur einmal auf dem Netzlaufwerk installiert und von dort gestartet. Bei Floating-Lizenzen überwacht der integrierte Lizenzmanager die Anzahl der gleichzeitig geöffneten Programme.

• Lieferungs- und Zahlungsbedingungen:

Verpackungs- und Versandkostenpauschale in Deutschland 10 Euro, Europa 25 Euro, Welt 60 EUR. Bei schriftlicher Bestellung von Firmen und staatlichen Behörden Lieferung gegen Rechnung (Freischaltung nach Zahlungseingang), sonst per Kreditkarte (Mastercard, VISA) oder Vorauszahlung. Zahlung : 10 Tage 2% Skonto, 30 Tage netto, Vorauszahlung 2% Skonto.

Freischaltung

Bei der Installation generiert die Software eine E-Mail mit Maschinencodes. Die Email senden Sie an HEXAGON und erhalten daraufhin die Freischaltcodes (Voraussetzung: Zahlungseingang).

Preisangaben innerhalb Deutschlands zzgl. 19% MwSt.

HEXAGON Industriesoftware GmbH

Stiegelstrasse 8D-73230 Kirchheim-TeckTel.0702159578, 07021 8660211Fax 07021 59986Kieler Strasse 1AD-10115 BerlinMühlstr.13D-73272 NeidlingenMobil: 0163-7342509E-Mail: info@hexagon.deWeb : www.hexagon.de