# **HEXAGON** Info 155

by Fritz Ruoss

# Jan./Feb. 2016

#### ZAR5: Power shearing (driving shaft + control shaft) as option

Sun gear, planet carrier and ring gear are connected with driving shaft (input), driven shaft (output) and control shaft (control). If control shaft is locked, power flows from input shaft to output shaft. If input shaft and control shaft are connected (for direct transmission i=1) or input shaft and control shaft are driven by the same motor with different speed (i.e. Lepelletier planet gear set), power will be shared between input shaft and control shaft (P\_input + P\_control = P), check "power sharing Input+Control". If not checked, full power always flows to input shaft, and control shaft requires external power (or braking power, if negative). Ratio of power sharing depends on gear ratio. If control shaft is locked (n=0), control power (P control) is 0. Power sharing checked or not does not influence output power and torque in this case.



#### ZAR5: Wolf chart with torque, speed and power

Rotational speed and power at sun shaft (S), carrier (C) and hollow wheel (H) have been added to Wolf diagrams, and also planet gear transmission ratio i0 (zH/zS) and pitch power Pw.



Wolf chart for planet gear with connected input shaft and control shaft (i=1).

### ZAR5 : Strength calculation for zero speed planet gear

If input shaft and control shaft are connected (i=1, n control = n input). Planet gear speed relative to carrier is 0 (npc=0). Fatigue strength of gear wheels could not be calculated in this case. Since release 10.0, ZAR5 calculates SH and SF as static safety coefficients from torque.



### ZAR5: Screen graphic of gear pairs dimensions and strength calculation

Same as in ZAR1+, you can now get screen with nom/min/max dimensions and strength calculation for gear pairs sun-planet and planet-ring gear.



### ZAR1+: Strength calculation for zero speed gear



In earlier versions, ZAR1+ calculated fatigue strength only if speed > 0 and power > 0. Since release 25.0, ZAR1+ calculates static safety SH and SF for the given torque even if speed n=0.

### ZAR1+: Printout with load spectrum and multistage gear

Results of load spectrum calculation and multistage gear calculation can be printed separate now at "View->Printout"

| ZAR1+     | Spur and Helical Gears -                                                            | 0.zar                                                                                                                                                          |          |
|-----------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| File Edit | View CAD Database Doc                                                               | ument OLE Help                                                                                                                                                 |          |
|           | Quick <u>3</u><br>Quick <u>4</u>                                                    | stages- 2<br>MPa E- 210000 MPa                                                                                                                                 |          |
|           | Printout ►<br>Dimensions<br>Strenath                                                | <u>D</u> imensions<br>S <u>t</u> rength<br>Load Spectrum                                                                                                       |          |
|           | Tooth Contact                                                                       | <u>multistage</u><br>Dimensions <u>a</u> nd Strength+<br>Excerpt Printout <u>D</u> imensions<br>Excerpt Printout S <u>t</u> rength<br><u>P</u> roduction Sheet |          |
|           | Ta <u>b</u> les<br><u>T</u> ooth Thickness<br>Specific <u>S</u> liding<br>Viskosity |                                                                                                                                                                |          |
|           | <u>S</u> afety ▶<br>Life Expectation<br>Load Spectrum ▶<br>Gear <u>m</u> ultistage  |                                                                                                                                                                |          |
| ┆<br>┍┿   | Animation Tooth <u>c</u> ontact<br>Animation <u>G</u> ear geometry                  |                                                                                                                                                                | دلا<br>ا |
|           | 12<br>[1]                                                                           |                                                                                                                                                                |          |

## ZAR1+, ZAR5: Edit Dimensions

Buttons x1min and x2min or xSmin and xPmin set minimum profile shift coefficient only if larger than 0. Else, x will be set 0.

| ZAR1+ Dimer | nsions             |                |        |              |              |                 |        | _ 🗆 × |
|-------------|--------------------|----------------|--------|--------------|--------------|-----------------|--------|-------|
| mm <> inch  | gea                | ar1 <u>c</u>   | gear 2 | [            | tip reductio | n 1             |        |       |
| Pres        | ssure angle alpha  | 20             | deg. < | J            | O c1         | 3,740627        | mm     |       |
|             | Helix angle beta   | 16             | deg.   |              | O kmn1       | 0,98189         | mm     | <     |
| N           | lormal module mn   | 14             | 🛊 mm 🛛 | ,814 1/in    | 💿 da1        | 331,114         | mm     |       |
| Numb        | per of teeth z 20  | 57             |        |              | <u> </u>     |                 |        |       |
|             | Facewidth b 180    | 180            | ) mr   | n <          | tip reductio | n 2             |        |       |
| b eff       | Facewidth b eff    | 160            | mm     |              | O c2         | 3,740338        | mm     |       |
| (           | Center distance a  | 570            | mm     | O a          | O kmn2       | 0,981601        | mm     | <     |
| Profile     | shift coeff. x 0,5 | 0,1            | 9907   | ⊙ x1<br>⊙ x2 | ⊙ da2        | 869,921         | mm     |       |
| x opt. s    | liding x1          | min x2         | min <  | x0 < x05     |              |                 | 1      |       |
| x opt. s    | stress             | x1<->x2        |        |              | Ļ            | Aux. Image c, k | mn, da | 1     |
| tooth a     | lignment gear 1 f  | ree            | •      |              | beta=0       | , z=zn          |        |       |
| OK          | Cancel             | <u>H</u> elp 1 | ext    | Aux. Image   |              | Online          | C      | Calc  |

# ZAR1+: Input profile shift and center distance

At input of gear pair dimensions you can select which one of the three values center distance, profile shift coefficient  $x_1$  or  $x_2$  should be calculated. Input has been optimized, selected value is calculated and shown now immediately after input of a,  $x_1$  or  $x_2$ .

### ZAR1W: CAD Tooth profile input window

As known from the involute spline programs, before generating the gear profile at "CAD->Tooth Profile Gear" you now get an input window with settings for profile shift coefficient or flank clearance, resolution of involute and tooth root curve, and drawing parameters.

| ZAR1W - Involute Gear Dimensions             |  |  |  |  |  |  |  |  |
|----------------------------------------------|--|--|--|--|--|--|--|--|
|                                              |  |  |  |  |  |  |  |  |
| involute curve as Polyline ?                 |  |  |  |  |  |  |  |  |
| ✓ draw diameters ?                           |  |  |  |  |  |  |  |  |
| draw tooth root curve ?                      |  |  |  |  |  |  |  |  |
| number of points for involute polycurve 20 💽 |  |  |  |  |  |  |  |  |
| gen.addend.modif.coeff.xe 0,547809           |  |  |  |  |  |  |  |  |
| OK Cancel <u>H</u> elp                       |  |  |  |  |  |  |  |  |

# FED1+,2+,3+,4, WN1, ZAR3+: Online Input with green and yellow fields

"Online Input" is used for input windows with recalculated and updated results after each input step. Input fields are marked yellow now, if this field is a calculated value and input changes other input fields. So you are warned that input in a yellow field may change previous input data.

| F | ED2+      | Dimension | ing          |          |        |      |                                |  |
|---|-----------|-----------|--------------|----------|--------|------|--------------------------------|--|
|   | - Input - |           |              | C Output |        |      | Error Messages                 |  |
|   |           |           |              | R        | 2,265  | N/mm | Error : taukh>tauhperm! S=0,77 |  |
|   | F2        | 60        | N            | LO       | 40     | mm   | Warning: taukh !               |  |
|   | s2        | 22,15     | mm           | Ln       | 75,02  | mm   |                                |  |
|   | De        | 9,949     | mm           | Lk       | 26     | mm   |                                |  |
|   | d         | 1,3       | mm           | tau k1   | 119,3  | MPa  |                                |  |
|   | n(if)     | 19        |              | tau k2   | 728,5  | MPa  |                                |  |
|   | FO        | 9,829     | N            | tau kh   | 609,1  | MPa  |                                |  |
|   | LH1       | 7         | mm           | tau per  | m893,8 | MPa  |                                |  |
|   | LH2       | 7         | mm           | tau O    | 99,12  | MPa  |                                |  |
|   | L2        | 62,15     | mm           | s1       | 0      | mm   |                                |  |
|   |           |           |              | s2       | 22,15  | mm   |                                |  |
|   |           |           |              |          |        |      |                                |  |
|   |           |           |              |          |        |      |                                |  |
|   |           | Ж         | <u>H</u> elp |          |        |      | Aux. Image Aux. Images Close   |  |
|   |           |           |              |          |        | _    |                                |  |

A green input field means that the entered value is only approximate, it may be rounded or changed. This is the case for extension springs and torsion springs, where calculated number of coils must be rounded to loop position or leg angle, and the rest must be compensated by modified coil diameter.

| WN1 Re-calculation       |       |        |     |                              |
|--------------------------|-------|--------|-----|------------------------------|
| Input                    | Outpu | ıt ——— |     | Error Messages               |
| ISO-A H 7                | ри    | 56,84  | MPa |                              |
| ISO-I <mark>u 6</mark>   | ро    | 138,3  | MPa |                              |
| AoA <mark>25</mark> μm   | SPI   | 3,089  |     |                              |
| AuA <mark>Ο μ</mark> m   | SPA   | 1,158  |     |                              |
| Aol <mark>76</mark> μm   | Uu    | 0,035  | mm  |                              |
| Aul <mark>60 μ</mark> m  | Uo    | 0,076  | mm  |                              |
| Uu <mark>0,035</mark> mm | Tzul  | 755,0  | Nm  |                              |
| Uo <mark>0,076</mark> mm | pnu   | 42,91  | MPa |                              |
| Rz-A 4 µm                | Tu    | 1000   | Nm  |                              |
| Rz-I 4 μm                | SR    | 1,073  |     |                              |
| pmin 40 MPa              | SPAx  | 2,14   |     |                              |
|                          |       |        |     |                              |
|                          |       |        |     |                              |
| ОК <u>Н</u> ер           |       |        |     | Aux. Image Aux. Images Close |
|                          |       |        |     |                              |

Recalculation of cylindrical press fits with WN1 has many yellow fields: Input of ISO tolerances calculates tolerances A and then interference U of shaft and hub fit. Modification of tolerances A clears ISO tolerance. And modification of interference U clears all, tolerances A and ISO tolerances.

# Spring material FD, TD, VD according to EN 10270-2

Old DIN 17223 defined material types FD for static and VD for dynamic load.

New EN standard defines FD for static load, TD for mean fatigue strength and VD for "difficult dynamic load". TD material types were not included in the fedwst material database as separate material until now. If your spring material database includes "TD" as second name in "Name3" or "Name4" of "VD" material, please clear "TD" at "Database->fedwst.dbf". Tensile strength and permissible shear stress of TD and VD is equal, but fatigue strength of TD is lower than VD. EN 13906-1:2013 includes Goodman diagrams for TD (= FD) and VD. If these should be applied for FDC, TDC and VDC only, or also for FDCrV, FDSiCr, FDSiCrV, TDCrV, TDSiCr, TDSiCrV and VDCrV, VDSiCr and VDSiCrV, is not articulated. Fatigue strength data of VDSiCr and VDCrV used in fedwst.dbf is substantially higher than for VDC and originate from Bosch RDZ charts.

TDC, TDCrV, TDSiCr and TDSiCrV have been added in FEDWST.DBF now as separate materials. TDC with fatigue strength values of FDC and tensile strength parameters of VDC. No Goodman diagram is available for TDCrV, TDSiCr and TDSiCrV, but tensile strength is equal with VDCrV, VDSiCr and VDSiCrV.

| N. | fedwst.o    | dbf mater   | rial      |                 |                |                      |       |       |        |        |      |     |       |     |     | _   |     |
|----|-------------|-------------|-----------|-----------------|----------------|----------------------|-------|-------|--------|--------|------|-----|-------|-----|-----|-----|-----|
| E  | e View Help |             |           |                 |                |                      |       |       |        |        |      |     |       |     |     |     |     |
|    | M           | •           |           | ÞI              | <u>S</u> earch | Search <u>N</u> ext  | OK C  | ancel |        |        |      |     |       |     |     |     |     |
|    | NAME1       |             | NAME2     | 2               |                | NAME3                | NAME4 | G     | E      | DICHTE | RMO  | DRO | RMMAX | DRM | DTO | T01 | D 🔺 |
|    | JIS SWP     | -B          | spring s  | steel wire pat. | . drawn        | piano wire high-tens |       | 82000 | 206000 | ) 7,85 | 2310 | 1   | 3480  | 800 | 1   | 104 | 0   |
|    | EN 1027     | 0-2-TDC     | oilharde  | ened spring s   | teel wire      |                      |       | 80000 | 20000  | 7,85   | 1785 | 1   | 2000  | 385 | 1   | 88  | 0   |
|    | EN 1027     | 0-2-TDCrV   | oilharde  | ened spring s   | teel wire      | TD-CrV               |       | 79000 | 20000  | ) 7,85 | 1910 | 1   | 2060  | 545 | 1   |     | 0   |
|    | EN 1027     | 0-2-TDSiCr  | oilharde  | ened spring s   | teel wire      | TD-SiCr              |       | 79000 | 20000  | ) 7,85 | 2080 | 1,3 | 2230  | 488 | 1   |     | 0   |
|    | EN 1027     | 0-2-TDSiCrV | ilharde 🚺 | ened valve sp   | oring steel    |                      |       | 79500 | 206000 | 7,85   | 2280 | 1   | 2300  | 410 | 1   |     | 0 🖵 |
| E  | d_          |             |           |                 |                |                      |       |       |        |        |      |     |       |     |     |     | •   |

# FED1+, 2+, 3+,5,6,7, 8: Temperature-dependant E modulus and G modulus

According to latest EN 13906-1 of 2013, spring wire to EN 10270-3 and to EN 12166 (bronze, copper alloy) are calculated with another temperature coefficient. New formula is used in our spring calculation software now.

G = G20 \* (1 - r \* (t - 20)) with t = temperature in °C r = 0,25e-3 for spring steel wire to EN 10270-1, EN 10270-2 and EN 10089 r = 0,40e-3 for spring steel wire to EN 10270-3 r = 0,40e-3 for spring wire to EN 12166

In earlier releases of EN 13906, a diagram instead of a formula was used to get temperature dependency. Converted into coefficient r, diagram values correspond to r = 1/3600 = 0.28 e-3.

Because formula was modified in the programs, you will get now slightly differing results when you load earlier calculations with operating temperature other than 20°C. If you open files in FED1+, number of coils is modified, spring loads remain unchanged. In FED2+, coil diameter may be modified, in FED3+ number of coils and delta0, in FED5, FED6 and FED7 the spring loads.

# FED1+, 5, 6, 7: Reduced spring mass by grinding of spring ends

Grinded material of the end coils had not been considered in spring mass calculation, this was improved now.

# FED5, FED6, FED7: Pitch height considered for calculation of wire length

Same as already in FED1+, also FED5, FED6 and FED7 calculate wire length with consideration of spring height. In earlier versions, wire length was calculated simply as pi\*D\*nt.

# FED1+: Pitch m and swelling of the outside diameter deltaDe under load

In EN 13906-1:2013, calculation of pitch "m" for calculation of deltaDe was corrected (19). In FED1+ and FED6, coil pitch "m" ("P0" in FED1+) since years is calculated to the new formula: m = (L0-Lc)/n+d (see info 121). This is equal with the new formula in EN: m = (sc + n\*d)/n. More simply it should be: m = sc/n + d. However, this formula is valid also for compression springs with raw spring ends. The other formula "m=(sc+(n+1.5)\*d)/n" in EN 13906 is superfluous and wrong, cause difference for raw end coils is already included in block deflection sc.

# FED1+, FED5, FED6: Dimensions of mandrel and bore separate

Fields for mandrel and bore have been separated in the production drawing input window to avoid overlap when define spring led by both, mandrel and bore.

| ED5 production drawing                 |                                                                          |
|----------------------------------------|--------------------------------------------------------------------------|
| Burring of spring ends                 | EN 10270-1-DH                                                            |
| O not                                  | 🔽 spring steel wire pat. drawn                                           |
| C inside                               | V ISO 8458-2-DH                                                          |
| C outside                              |                                                                          |
| C free                                 | Set test springs ! Supply remaining Springs set                          |
| <ul> <li>inside and outside</li> </ul> | ✓ display setting length     Ls = 0,914 mm     Lc     L2       ✓ Ls = Lc |
|                                        | 🔽 display Ld, P, m                                                       |
|                                        | display F1, F2, sh, f                                                    |
| Range of working temperature from 4    | 0 to 120 °C                                                              |
| surface protection                     | phosphated                                                               |
| Additional Indications                 |                                                                          |
|                                        |                                                                          |
| Drawing with mandrel and hore          | mandrel bedding                                                          |
| Drawing with manufer and bore          | C d mandrel <= 4,535<br>d mandrel = 4 ± 0,2 mm                           |
| Mandrei bedding                        |                                                                          |
| bore bedding                           | Dore bedding                                                             |
|                                        |                                                                          |
| г                                      |                                                                          |
|                                        | OK Cancel <u>H</u> elp                                                   |
|                                        |                                                                          |

# FED3+ Legs bent-up, axial

Legs can be tangential or bent-up external, internal, or axial (new).

# **FED5:** Concentric end coils

If concentric end coils defined, FED5 production drawing includes dimensions of minimum inside diameter and maximum outside diameter of the end coils instead of coil diameters (coil diameters Dio and Deu in brackets). Production drawing always illustrates conical end coils.



# SR1+: Calculate deformation cone of TTJ with TBJ calculation method

VDI 2230 differs calculation of deformation cone between TTJ and TBJ. In figure 9, deformation cones are illustrated (a), but VDI 2230 uses one deformation cone followed by a sleeve "to simplify the calculation". This calculation method is not applicable for a bolted joint of several clamping plates with more than one deformation cone. But even for simple calculations, this simplified calculation method seems to be incorrect. Example: B2 of VDI 2230



Supposed a tapped thread joint (TTJ) instead of through-bolt joint (TBJ). Then calculate cone angle tan(phiE)=0.348+0.013\*ln(BL)+0.193\*ln(y)=0.647 (phi=32.8°, larger than phiD of TBJ!) DA,Gr = dw+2\*lk\*tan(phi) = 100 mm (larger than TBJ!)

Comparing the deformation bodies of TTJ joint and equivalent TBJ joint shows that there must be something wrong: The TTJ deformation body is only one huge cone, because "DA,Gr" nor "de" will be reached.



In SR1+ you can now set the option ,,TTJ -> TBJ (phiD, dwNut)" to calculate the deformation body of the TTJ in the same way as for TBJ. SR1+ calculates bearing diameter of the female thread according to figure 9 of VDI 2230-1:2015 (dw= d + 2\*tan(phiD)\*mgeo with mgeo = screw-in depth of bolt in female thread, possibly less one thread pitch).

Because cone angle phi depends on bearing diameter dw and vice versa, dw and phiD are calculated iterative.

### SR1+: Calculate pressure from deformation cone cross-section

In earlier versions of SR1, pressure F/A between clamping plates was calculated with virtual external diameters according to VDI 2230:1986. At "pmax" you now can calculate pressure from section area of the deformation cones. If TTJ, better set "TTJ -> TBJ (phiD, dwnut)", else you may get too large cross-section area resulting in too low pressure. In most cases, flank pressure safety margin remains the same, because maximum value applies between bolt head or washer and first clamping plate, or between nut and last clamping plate.

| SR1+ calculation base                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                     |        |  |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|--------|--|--|--|--|--|--|--|
| C VDI 2230 : 1986<br>VDI 2230 : 1986<br>VDI 2230 - 12015<br>C deformation sleev<br>C deformation cone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | p max<br>C deformation sleeve<br>C deformation cone |        |  |  |  |  |  |  |  |
| 🔽 TTJ -> TBJ (phiD.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | . dw nut)                                           |        |  |  |  |  |  |  |  |
| thread length engaged to Dose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     | MA pre |  |  |  |  |  |  |  |
| Calc.min.thread length engag.for FSmax (=FMzul+FSA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                     | FA pre |  |  |  |  |  |  |  |
| Tolerances for friction coefficients ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                     | F pre  |  |  |  |  |  |  |  |
| tolerances d2, d3 for FM, MA ? max (d2=d2max, d3=d3max)<br>Multi-bolted joint (FA,FQ,FKR = f (MV) ?<br>Circular Flange<br>Circular Flange<br>C |                                                     |        |  |  |  |  |  |  |  |
| TTJ: thread engagement mgeo and mtr reduced by bolt le                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ngth tolerance                                      |        |  |  |  |  |  |  |  |
| Units metric/imperial metric (mm, N, MPa, Nmm, *C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                     |        |  |  |  |  |  |  |  |
| OK         Cancel         Help Text         Calc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                     |        |  |  |  |  |  |  |  |

### SR1+: Non-standard sizes added for hexagon head bolts

Sizes M45, M52, M60, M68 and M160 added in the database (according to DIN 931).

### SR1+: Safety not shown if S>1000

At Quick3 View, Quick4 View, and table drawing, safety margins are listed only if less than 1000.

### WN8: ISO tolerance for self-defined splines

For self-defined splines you can now input ISO tolerance for tooth tip diameter of internal and external spline. If nothing entered, diameters are calculated without tolerance. If you select profile from DIN 5481 database, ISO tolerance A11 will be set for internal spline and a11 for external spline. In self-defined splines, root fillet radius can be set 0 now. In earlier versions, maximum fillet radius was calculated in this case.

| 🔶 WN8                       |                                           |       |    | _ 🗆 🤅 |
|-----------------------------|-------------------------------------------|-------|----|-------|
| C Database DIN 5481         | Name                                      |       |    |       |
| t• seir-denned              | Tip diameter hub Dii                      | 95,35 | mm |       |
| DIN 5481                    | Tip diameter shaft Dee                    | 96,06 | mm |       |
|                             | Pitch diameter D                          | 96,00 | mm | <     |
|                             | No. of teeth z                            | 73    |    | <     |
|                             | Gap angle gamma e                         | 90    | •  | <     |
|                             | Root fillet radius hub ri max             | 1,100 | mm | <     |
| ISO Tol. Dii A11            | Root fillet radius shaft re max           | 0,5   | mm | <     |
| ISO Tol. Dee a11 <          | Total tolerance tooth gap hub TGi         | 0     | mm | <     |
|                             | Total tolerance tooth thickness shaft TGe | 0     | mm | <     |
|                             | meas. circle diameter hub DRi             | 0,455 | mm | <     |
| profile length I 192 mm < ? | meas, circle diameter shaft DRe           | 0,455 | mm | <     |
| OK Cancel ?                 | [mm <-> inch]                             |       | Ca | lc    |

### **Involute spline package**

For calculation of involute splines to different standards DIN 5480, ANSI B92.1, ISO 4156, DIN 5482 and self-defined involute splined joints, we offer now a bundle with WN2+, WN4, WN5, WN10 and WNXE for a price of 1200 Euro.

# PRICELIST 2016-03

| PRODUCT                                                                                | EUR    |
|----------------------------------------------------------------------------------------|--------|
| DI1 Version 1.2 O-Ring Seal Software                                                   | 190,-  |
| DXF-Manager Version 8.7                                                                | 383,-  |
| DXFPLOT V 3.2                                                                          | 123    |
| FED1 V28.1 Helical Compression Springs                                                 | 491    |
| FED1+ V28.1 Helical Compression Springs incl. spring database, animation, relax., 3D., | 695    |
| FED2 V19.6 Helical Extension Springs                                                   | 501    |
| FED2+ V19.6 Helical Extension Springs incl. spring database animation relaxation       | 675 -  |
| FED3+ V18.2 Helical Torsion Springs incl. prod drawing, animation, 3D, rectand wire    | 480 -  |
| FED4 Version 7.2 Disk Springs                                                          | 430 -  |
| FED5 Version 15.0 Conical Compression Springs                                          | 741 -  |
| FED6 Version 15.5 Nonlinear Cylindrical Compression Springs                            | 634 -  |
| FED7 Version 12.4 Nonlinear Compression Springs                                        | 660 -  |
| FED8 Version 6.7 Torsion Bar                                                           | 317 -  |
| FED9 Version 5.8 Spiral Spring                                                         | 394 -  |
| FED10 Version 3.3 Leaf Spring (complex)                                                | 500 -  |
| FED11 Version 3.3 Spring Lock and Bushing                                              | 210 -  |
| FED12 Version 2.4 Elastomere Compression Spring                                        | 210,-  |
| FED13 Version 3.0. Wave Spring Washers                                                 | 185 -  |
| FED14 Version 1.4. Helical Wave Spring                                                 | 305 -  |
| FED15 Version 1.3 Leaf Spring (simple)                                                 | 180 -  |
| CEO1, VE 7 Cross Section Calculation incl. profile database                            | 204    |
| GEO14 V3.7 Closs Section Calculation Incl. profile database                            | 294    |
| CEO2 V2.0 Rotation Brocource                                                           | 194,-  |
| CEO4 V2.0 Com Softwara                                                                 | 200,-  |
| UPCL Manager Version 8.6                                                               | 200,-  |
| HPGL-Manager Version 6.0                                                               | 303,-  |
| LG1 V6.4 Roll-Contact Bearings                                                         | 296,-  |
| LG2 V2.1 Hydrodynamic Plain Journal Bearings                                           | 460,-  |
| SR1 V21.2 Bolted Joint Design                                                          | 640,-  |
| SR1+ V21.2 Bolted Joint Design Incl. Flange calculation                                | 750,-  |
| TOL1 V11.8 Tolerance Analysis                                                          | 506,-  |
| TOLICON V1.5 Conversion Program for TOL1                                               | 281,-  |
| TOL2 Version 3.3 Tolerance Analysis                                                    | 495,-  |
| TOLPASS V4.1 Library for ISO tolerances                                                | 107,-  |
| TR1 V3.8 Girder Calculation                                                            | 757,-  |
| WL1+ V19.8 Shaft Calculation Incl. Roll-contact Bearings                               | 945,-  |
| WN1 Version 11.6 Cylindrical and Conical Press Fits                                    | 485,-  |
| WN2 V 9.5 Involute Splines to DIN 5480                                                 | 250,-  |
| WN2+ V 9.5 Involute Splines to DIN 5480 and non-standard involute splines              | 380,-  |
| WN3 V 5.3 Parallel Key Joints to DIN 6885, ANSI B17.1, DIN 6892                        | 245,-  |
| WN4 V 4.4 Involute Splines to ANSI B 92.1                                              | 276,-  |
| WN5 V 4.4 Involute Splines to ISO 4156 and ANSI B 92.2 M                               | 255,-  |
| WN6 V 2.9 Polygon Profiles P3G to DIN 32711                                            | 180,-  |
| WN7 V 2.2 Polygon Profiles P4C to DIN 32712                                            | 175,-  |
| WN8 V 2.0 Serration to DIN 5481                                                        | 195,-  |
| WN9 V 2.1 Spline Shafts to DIN ISO 14                                                  | 170,-  |
| WN10 V 3.7 Involute Splines to DIN 5482                                                | 260,-  |
| WN11 V 1.3 Woodruff Key Joints                                                         | 240,-  |
| WNXE V 1.1 Involute Splines - dimensions, graphic, measure                             | 375,-  |
| WST1 V 10.0 Material Database                                                          | 235,-  |
| ZAR1+ V 25.0 Spur and Helical Gears                                                    | 1115,- |
| ZAR2 V7.7 Spiral Bevel Gears to Klingelnberg                                           | 792,-  |
| ZAR3 V8.9 Worm Gears                                                                   | 404,-  |
| ZAR4 V3.7 Non-circular Spur Gears                                                      | 1610,- |
| ZAR5 V10.0 Planetary Gearings                                                          | 1355,- |
| ZAR6 V3.7 Straight/Helical/Spiral Bevel Gears                                          | 585,-  |
| ZARXP V2.0 Involute Profiles - dimensions, graphic, measure                            | 275,-  |
| ZAR1W V1.6 Gear Wheel Dimensions, tolerances, measure                                  | 450,-  |
| ZM1.V2.3 Chain Gear Design                                                             | 326,-  |

| PACKAGES                                                                                                                                                                                                                                                                       | EUR     |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--|--|--|--|
| HEXAGON Mechanical Engineering Package (TOL1, ZAR1+, ZAR2, ZAR3+, ZAR5, ZAR6, WL1+, WN1, WN2+, WN3, WST1, SR1+, FED1+, FED2+, FED3+, FED4, ZARXP, TOLPASS, LG1, DXFPLOT, GEO1+, TOL2, TOL1CON, GEO2, GEO3, ZM1, WN6, WN7, LG2, FED12, FED13, WN8, WN9, WN11, DI1, FED15, WNXE) | 8,500   |  |  |  |  |
| HEXAGON Mechanical Engineering Base Package (ZAR1+, ZAR3+, ZAR5, ZAR6, WL1+, WN1, WST1, SR1+, FED1,+, FED2+, FED3+)                                                                                                                                                            | 4.900,- |  |  |  |  |
| HEXAGON Spur Gear Bundle (ZAR1+ and ZAR5)                                                                                                                                                                                                                                      | 1,585   |  |  |  |  |
| HEXAGON Involute Spline Package (WN2+, WN4, WN5, WN10, WNXE)                                                                                                                                                                                                                   |         |  |  |  |  |
| HEXAGON Graphic Package (DXF-Manager, HPGL-Manager, DXFPLOT)                                                                                                                                                                                                                   |         |  |  |  |  |
| HEXAGON Helical Spring Package (FED1+, FED2+, FED3+, FED5, FED6, FED7)                                                                                                                                                                                                         | 2,550   |  |  |  |  |
| HEXAGON Tolerance Package (TOL1, TOL1CON, TOL2, TOLPASS)                                                                                                                                                                                                                       | 945     |  |  |  |  |
| HEXAGON Complete Package (All Programs of Engineering Package, Graphics Package, Tolerance<br>Package, Helical Spring Package, TR1, FED8, FED9, FED10, ZAR4, GEO4, WN4, WN5,<br>FED11,WN10, ZAR1W, FED14)                                                                      | 11,500  |  |  |  |  |

#### **Quantity Discount for Individual Licenses**

| Licenses   | 2   | 3     | 4   | 5     | 6   | 7     | 8   | 9     | >9  |
|------------|-----|-------|-----|-------|-----|-------|-----|-------|-----|
| Discount % | 25% | 27.5% | 30% | 32.5% | 35% | 37.5% | 40% | 42.5% | 45% |

#### **Network Floating License**

| Licenses              | 1         | 2          | 3  | 4   | 5   | 6   | 78  | 911 | >11 |
|-----------------------|-----------|------------|----|-----|-----|-----|-----|-----|-----|
| Discount/Add.cost     | -50%      | -20%       | 0% | 10% | 15% | 20% | 25% | 30% | 35% |
| (Nogative Discount me | one addit | ional cost | 1  |     |     |     |     |     |     |

(Negative Discount means additional cost)

#### Language Version:

- German and English : all Programs
- French: FED1+, FED2+, FED3+, FED4, FED5, FED6, FED7, FED9, FED10, FED14, TOL1, TOL2.
- Italiano: FED1+, FED2+, FED3+, FED4, FED5, FED6, FED7, FED9.
- Swedish: FED1+, FED2+, FED3+, FED5, FED6, FED7.
- Portugues: FED1+
- Spanish: FED1+, FED2+, FED3+

#### **Updates:**

| Update prices                                      | EUR  |  |
|----------------------------------------------------|------|--|
| Software Update (software + pdf manual)            | 40,- |  |
| Software Update (software 64-bit Win + pdf manual) | 50,- |  |

Update Mechanical Engineering Package: 800 EUR, Update Complete Package: 1000 EUR

#### Maintenance contract for free updates: annual fee: 150 EUR + 40 EUR per program

#### **Upgrades**

For upgrades to network licenses or plus versions or software bundles, upgraded licenses are credited 75%.

#### Hexagon Software Network Licenses

Floating License in the time-sharing manner by integrated license manager Individual licenses may not be installed in a network!

#### **Conditions for delivery and payment**

General packaging and postage costs are EUR 60, (EUR 25 inside Europe) Delivery by Email (program packed, manual as pdf files): EUR 0. Conditions of payment: bank transfer in advance with 2% discount, or by credit card (Master, Visa) net.

#### Key Code

After installation, software has to be released by key code. Key codes will be sent after receipt of payment.

#### **HEXAGON Industriesoftware GmbH**

 Stiegelstrasse 8
 D-73230 Kirchheim
 Tel.+49 702159578
 Fax +49 7021 59986

 Kieler Strasse 1A
 D-10115 Berlin
 Tel. +49 30 28096996
 Fax +49 30 28096997

 Mobile: +49 163 7342509
 E-Mail: info@hexagon.de
 Web: http://www.hexagon.de