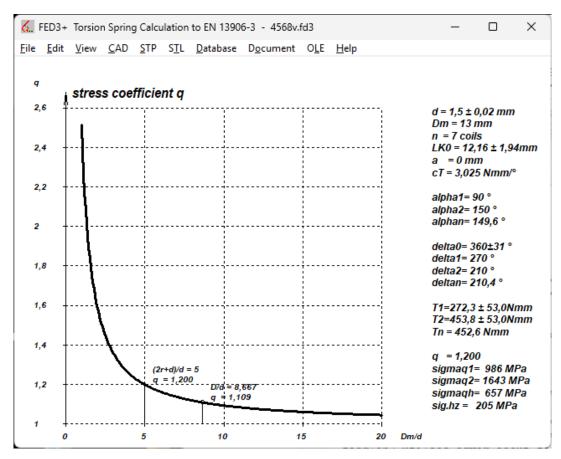
by Fritz Ruoss

FED3+: Factor q for Torsion Springs with Bent Legs

For torsion springs with tangential legs, the stress coefficient q for the increased bending stress on the inner side of the coil is calculated from the coil ratio, similar to how shear stress is calculated for helical compression springs. However, for torsion springs with bent legs, it is also calculated from the bending radius, and this factor q is usually higher than the one calculated from Dm/d. Enter the bend radius as large as possible. The theoretical mean coil diameter here is 2*(rbending+d/2) =2*rbending+d. w=Dm/d is then (2*rbending+d)/d = 2*rbending/d+1.


EN 13906-3 uses an approximation equation for q:

$$q = (w+0.07)/(w-0.75)$$

FED3+ uses a more accurate approximation equation (according to Göhner):

$$q = 1 + 0.87/w + 0.642/w^2$$

For w < 2, there are significant deviations. For an extreme bending radius of 0 (w = 1), q is 2.5 according to Göhner, but 4.3 according to EN 13906-3. The stress coefficients on the inside of the coil and at the bend radius are displayed under "View\Stress\q".

In FED3+ the diagram starts at w=1, in EN 13906-1 at w=2.5. The bending radius according to EN should therefore be at least as large as the wire diameter.

FED1+,2+,3+,5,6,7,8,17: New Material Nimonic 75

Nimonic 75, a chromium-nickel steel for an exceptionally wide temperature range of -200 to +1000 °C, has been added to the database. However, it is only suitable for statically loaded springs. Nimonic 90 should be used for dynamically loaded springs.

FED5: taukh in the Goodman Diagram

The stroke stress taukh is tauk2 - tauk1. However, this is not the case for FED5. Here, the stress correction factor k is not constant if the spring is used in the progressive range. The stroke stress tauh (static) is, as usual, tau2 - tau1. But because k1 and k2 are different, the dynamic stroke stress tau2*k2 - tau1*k1 is not taukh. This is because the largest coil diameter Dm (with the highest stress) changes due to the adjacent coils. The following formula is used for calculating the lifting stress used to determine service life: taukh = tauk2 * (1 - F1 / F2).

SR1: Permissible pressure of clamping plates

Question: We have noticed that the material properties differ significantly between the material databases. Unfortunately, I haven't found any information about the meaning of the individual databases. It seems that mat_p_2 contains more "standard-compliant" values (taub/Rm, permissible surface pressure), while pressung.dbf contains more conservative values. Could you please provide a brief explanation of the different databases?

Answer: Only the permissible surface pressure pG differs significantly. mat_p_2.dbf contains only the data from VDI 2230:2015; mat_p_1.dbf contains only the data from VDI 2230:2003; pressung.dbf contains all materials, many of them multiple times. The database has an information field with source information. The oldest data is from VDI 2230:1986. The conservative values are from VDI 2230 of 1986. It's possible that the permissible surface pressure was set at that time to ensure the bolted joint is creep-resistant.

SR1/SR1+ FAQ: Minimum Thread Engagement Depth

Because VDI 2230 doesn't clearly define what the calculated minimum thread engagement depth mgesmin refers to, there are frequent questions about this. The calculated minimum thread engagement depth according to VDI 2230 must be large enough to prevent thread stripping under all circumstances and to ensure that the bolt breaks at the shank in case of overload. This allows for easy replacement of the broken bolt with a new one during repairs.

Therefore, this error message appears even if the calculated force and stress on the thread are very small and the thread will never strip under the calculated load.

HEXAGON PRICE LIST 2026-01-01

Base price for single licences (perpetual)	EUR
DI1 Version 2.2 O-Ring Seal Software	190
DXF-Manager Version 9.1	383
DXFPLOT V 3.2	123
FED1+ V32.2 Helical Compression Springs incl. spring database, animation, relax., 3D,	695
FED2+ V22.8 Helical Extension Springs incl. Spring database, animation, relaxation,	675
FED3+ V22.1 Helical Torsion Springs incl. prod.drawing, animation, 3D, rectang.wire,	600
FED4 Version 8.0 Disk Springs	430
FED5 Version 17.7 Conical Compression Springs	741
FED6 Version 18.7 Nonlinear Cylindrical Compression Springs	634
FED7 Version 15.7 Nonlinear Compression Springs	660
FED8 Version 7.6 Torsion Bar	317
FED9+ Version 7.0 Spiral Spring incl. production drawing, animation, Quick input	490
FED10 Version 4.5 Leaf Spring	500
FED11 Version 3.6 Spring Lock and Bushing	210
FED12 Version 2.7 Elastomer Compression Spring	220
FED13 Version 4.4 Wave Spring Washers	228
FED14 Version 2.9 Helical Wave Spring	395
FED15 Version 1.7 Leaf Spring (simple)	180
FED16 Version 1.4 Constant Force Spring	225
FED17 Version 2.7 Magazine Spring	725
FED19 Version 1.0 Buffer Spring	620
GEO1+ V7.5 Cross Section Calculation incl. profile database	294
GEO2 V3.4 Rotation Bodies	194
GEO3 V4.1 Hertzian Pressure	205
GEO4 V5.3 Cam Software	265
GEO5 V1.0 Geneva Drive Mechanism Software	218
GEO6 V1.0 Pinch Roll Overrunning Clutch Software	232
GEO7 V1.0 Internal Geneva Drive Mechanism Software	219
GR1 V2.2 Gear Construction Kit Software	185
GR2 V1.4 Eccentric Gear Software	550,-
GR3 V1.3 Cycloidal Gear Software	600,-
HPGL Manager Version 9.1	383
LG1 V7.0 Roll-Contact Bearings	296
LG2 V3.1 Hydrodynamic Plain Journal Bearings	460
SR1 V25.5 Bolted Joint Design	640
SR1+ V25.5 Bolted Joint Design incl. Flange calculation	750
TOL1 V12.0 Tolerance Analysis	506
TOL2 Version 4.1 Tolerance Analysis	495
TOLPASS V4.1 Library for ISO tolerances	107
TR1 V6.5 Girder Calculation	757
WL1+ V21.9 Shaft Calculation incl. Roll-contact Bearings	945
WN1 V12.4 Cylindrical and Conical Press Fits	485
WN2 V11.6 Involute Splines to DIN 5480	250
WN2+ V11.6 Involute Splines to DIN 5480 and non-standard involute splines	380
WN3 V 6.0 Parallel Key Joints to DIN 6885, ANSI B17.1, DIN 6892	245
WN4 V 6.2 Involute Splines to ANSI B 92.1	276
WN5 V 6.2 Involute Splines to ISO 4156 and ANSI B 92.2 M	255
WN6 V 4.1 Polygon Profiles P3G to DIN 32711	180
WN7 V 4.1 Polygon Profiles P4C to DIN 32712	175
WN8 V 2.6 Serration to DIN 5481	195
WN9 V 2.4 Spline Shafts to DIN ISO 14	170
WN10 V 4.5 Involute Splines to DIN 5482	260
WN11 V 2.0 Woodruff Key Joints	240
WN12 V 1.2 Face Splines	256
WN13 V 1.0 Polygon Profiles PnG	238
WN14 V 1.0 Polygon Profiles PnC	236
WNXE V 2.4 Involute Splines – dimensions, graphic, measure	375
WNXK V 2.2 Serration Splines – dimensions, graphic, measure	230
WST1 V 10.2 Material Database	235

1115
792
620
1610
1355
585
1380
1950
650
275
450
326
320
224

PACKAGES	EUR
HEXAGON Mechanical Engineering Package (TOL1, ZAR1+, ZAR2, ZAR3+, ZAR5, ZAR6, WL1+, WN1, WN2+, WN3, WST1, SR1+, FED1+, FED2+, FED3+, FED4, ZARXP, TOLPASS, LG1, DXFPLOT, GEO1+,	8,500
TOL2, GEO2, GEO3, ZM1, ZM3, WN6, WN7, LG2, FED12, FED13, WN8, WN9, WN11, DI1, FED15, GR1)	0,000.
HEXAGON Mechanical Engineering Base Package (ZAR1+, ZAR3+, ZAR5, ZAR6, WL1+, WN1, WST1, SR1+, FED1,+, FED2+, FED3+)	4,900
HEXAGON Spur Gear Package (ZAR1+ and ZAR5)	1,585
HEXAGON Planetary Gear Package (ZAR1+, ZAR5, ZAR7, ZAR8, GR1)	3,600
HEXAGON Involute Spline Package (WN2+, WN4, WN5, WN10, WNXE)	1,200
HEXAGON Graphic Package (DXF-Manager, HPGL-Manager, DXFPLOT)	741
HEXAGON Helical Spring Package (FED1+, FED2+, FED3+, FED5, FED6, FED7)	2,550
HEXAGON Complete Spring Package (FED1+, FED2+, FED3+, FED4, FED5, FED6, FED7, FED8, FED9+, FED10, FED11, FED12, FED13, FED14,, FED15, FED16, FED17, FED19)	4,985
HEXAGON Tolerance Package (TOL1, TOL1CON, TOL2, TOLPASS)	945
HEXAGON Complete Package (All Programs)	14,950

Quantity Discount for Individual Licenses

Licenses	2	3	4	5	6	7	8	9	>9
Discount %	25%	27.5%	30%	32.5%	35%	37.5%	40%	42.5%	45%

Network Floating License

Licenses	1	2	3	4	5	6	78	911	>11
Discount/Add.cost	-50%	-20%	0%	10%	15%	20%	25%	30%	35%

(Negative Discount means additional cost)

Language Version:

- German and English: all Programs
- French: FED1+, FED2+, FED3+, FED4, FED5, FED6, FED7, FED9+, FED10, FED13, FED14, FED15, TOL1, TOL2.
- Italiano: FED1+, FED2+, FED3+, FED4, FED5, FED6, FED7, FED9+, FED13, FED14, FED17.
- Swedish: FED1+, FED2+, FED3+, FED5, FED6, FED7.
- Portugues: FED1+, FED17
- Spanish: FED1+, FED2+, FED3+, FED17

Updates:

Software Update Windows: 40 EUR, Update Win64: 50 EUR

Update Mechanical Engineering Package: 800 EUR, Update Complete Package: 1200 EUR

Hexagon Software Network Licenses

Floating License in the time-sharing manner by integrated license manager.

Conditions for delivery and payment

Delivery by Email or download (zip file, manual as pdf files): EUR 0.

General packaging and postage costs for delivery on CD: EUR 60, (EUR 25 inside Europe)

Conditions of payment: bank transfer in advance with 2% discount, or PayPal (paypal.me/hexagoninfo) net. After installation, software has to be released by key code. Key codes will be sent after receipt of payment. Fee for additional key codes: 40 EUR

E-Mail: info@hexagon.de

Web: www.hexagon.de

,