by Fritz Ruoss

FED13, FED14, FED15, FED16: Material input for strip steel

14 material						>
14: EN 10151-1.4401 +C13 Band X5C	rNiMo17-12-2	+C1300 AISI 31	6	v	Database	ĺ.
Select			1			
🔿 Database fedwst9.dbf (priority)						
🔿 Database fedwst9.dbf (complete)						
others						
material modulus of elasticity E	EN 10151-1. 190000	4401 +C13				
density rho	8	kg/dm³				
tensile strength Rm	1465	MPa				
adm. bending stress sig.z	1025	MPa				
		1			1946-194	
		OK	Cance	E I	Help	

Similar to wire springs, you can now select the spring strip material from the database or enter the material data for leaf springs, wave springs and constant force springs. If you want to limit the selection from the database, you can mark the unwanted materials under "Database\Material" with the "-" button for deletion (but not delete/pack!), then they will no longer be displayed in the database (priority). As long as you don't change anything, option 1 and 2 are the same. If you choose "others", you can enter the data yourself. Note that this data is only valid for the corresponding strip thickness and that no Goodman diagram for fatigue strength can then be displayed.

|--|

<u>File E</u> dit	<u>V</u> iew <u>H</u> elp	101(Inat_145.001)										A
H + F	H + - A	~ % C	Search Searc	h Next 1 /40	ОК	Cancel						
TAB_A	NAME	NORM	TYP	ZUSTAND	INF01	INF02	SIGMA_B	SIGMA_S	SIGMA_ZDW	SIGMA_BW	TAU_TW	E_ /
>	1 S235JR	EN 10025	Baustahl		1.0037	St 37-2	360	235	145	180	11	.0
	1 S275JR	EN 10025	Baustahl		1.0044	St 44-2	410	275	165	205	12	:5
	1 E295	EN 10025	Baustahl		1.0050	St 50-2	470	295	190	235	14	10
	1 S355JO	EN 10025	Baustahl		1.0553	St 52-3	470	355	190	235	14	٥
	1 E335	EN 10025	Baustahl		1.0060	St 60-2	570	335	230	285	17	0
1.	1 E360	EN 10025	Baustahl		1.0070	St 70-2	670	360	270	335	20	0

The strength values of structural steel in the MAT_743 material database have been adapted to DIN 743-3 Ber 1:2014-12

SR1 / SR1+: Lateral stiffness and lateral displacement to DIN 25201-4:2021 added

DIN 2520	1-4	
а		12
uq	mm	0,024
uq,kons	mm	0,052
uq,zul	mm	0,050
uq,max	mm	0,100
Suq		0,52

In SR1 and SR1+, the lateral displacements uq due to bending of the bolt and the conservatively permissible lateral displacement uq,kons are now also calculated and printed out in accordance with the new DIN 25201-4:2021-11 for shear forces. Warning if uq < uq,cons. These values are only required if lateral displacement is permitted under static stress. The safety SG according to VDI 2230 is less than 1 for this case. If the clamping plates move, the transverse displacement of the screw according to DIN 25201-4 is calculated as a girder firmly clamped on both sides.

uq = FQ*lk³ / (a*E*I) a=stiffness factor a=12 (firmly clamped on both sides) to a=3 (firmly clamped on one side) FQ=shear force, lk=clamp length, E=modulus of elasticity, I=bending moment of inertia of the bolt uq,kons with FQ = FM,min * μ K,min Additionally, SR1 calculates uq,perm with FQ = FKR,min * μ T,min)

The sliding distance uq is limited by the bore of the clamping plates or by the positive fit. You can enter the design-related maximum glide distance "uq,max". From this, SR1+ calculates a safety margin "S uq = uq,kons / uq,max". Error messages are only

displayed if the safety SG (gliding) is less than 1.

DIN 25201-4:2021			
Stiffness coefficient	a		12
Lateral displacement (FQ)	uq	mm	0,024
Lateral displacement perm (FMreq)	uq,kons	mm	0,052
Lateral displacement perm (FMzul)	uq,zul		0,050
Max. backlash of bolt in hole	uq,max	mm	0,100
Safety uq,kons / uq,max	S uq		0,52

FED19 – Conical Springs of spring strip

Conical springs made of spring strip are known in a light version as springs for pruning shears (biconical) and in a heavy version as buffer springs for railways. From an energy point of view, helical compression springs with a rectangular cross-section make little sense. But if you need long, slender compression springs that must not buckle, such springs are the first choice. Or if you need a compression spring with a progressive characteristic and hysteresis.

Similar to a conical spring made of round wire, the spring characteristic is progressive because the large coils touch the ground one after the other. The windings twist under load, which creates friction between the lateral surfaces and thus a hysteresis in the spring characteristic. The stress is usually static. Because of the friction between the coils, such springs are rather unsuitable for dynamic applications.

FED19 is expected to be available from April 2022.

Java Log4j Libraries

HEXAGON Software does not use Java and is therefore not affected by the log4j vulnerability. You can use HEXAGON software as an isolated solution on a computer without internet and without any network connection. Java is the programming language of Internet programs and runs on the Internet browsers Microsoft Edge, Google Chrome, Mozilla Firefox, etc. Software that runs directly on the web (on an external web server) usually uses Java as the programming language. JavaScript, which is executed directly by the web browser, is sufficient for smaller projects and form entries. A small pocket calculator with a unit converter as a JavaScript program (with source code, does not use Java) can be found at www.hexagon.de/calc.htm.

The website www.hexagon.de does not use Java or cookies either. Javascript is used for the old ordering program, which runs directly on your web browser. There is no access to the web server, so you cannot send the order, but have to print it out and send it by e-mail. The new order program also only generates the text for an email order. You have to send the order yourself in your own email program. With HEXAGON software, you have maximum security when it comes to data protection.

Corona Calculation

Corona strategy and corona numbers from Denmark are interesting:

February 1, 2022: Denmark lifts all corona restrictions. The reason is the high vaccination rate (60% of the population was boosted, 80% vaccinated twice) and the low number of hospital admissions. The 7-day incidence is at a high of 5000, i.e. 5% of the population has been newly infected with Corona in just one week. The infection rate is 30%. Since then, the incidence has remained constant at 5,000 for a long time, and on 22.2.22 the infection rate was already 45%. So there are more than twice as many recovered as unvaccinated.

Corona Experiences

In January 2022 we had Corona in the family. The omicron variant according to the PCR test. So everyone in quarantine. Most of us had mild cold symptoms at the time: runny nose, sore throat, cough, slight fever. Only two out of eight family members took a PCR test, the others stayed at home in quarantine. Was that COVID-19? With a harmless course of the disease, although everyone has not been vaccinated? Then we hope that the omicron variant will continue to dominate Corona.

Respect for You (Election campaign by Olaf Scholz)

Respect for you, but only if you get vaccinated.

Don't play with the unvaccinated, don't sing their songs.

Beware of lateral thinkers (Querdenker).

Don't walk with anti-vaccination people.

In Germany, politicians and state broadcasters are relentlessly pushing for compulsory vaccination. One could almost think that this was injected into them. The majority of the population crumbles in favor of compulsory vaccination, proportional to the number of people who have been vaccinated 3 times and 4 times. Only 55% of the population are "boosted", and the readiness for a fourth vaccination is even lower.

Only with the start of the Ukraine war on February 24, 2022 does the corona debate disappear and what is really important is discussed.

Expending Horizons

"There will be no eastward expansion of NATO". That's what Moscow wanted to hear from the West. Why don't they just say that then? Just as they once claimed "There will be no compulsory vaccination in a free country".

HEXAGON PRICE LIST 2022-03-01

Base price for single licences (perpetual)	EUR
DI1 Version 2.2 O-Ring Seal Software	190
DXF-Manager Version 9.1	383
DXFPLOT V 3.2	123
FED1+ V31.3 Helical Compression Springs incl. spring database, animation, relax., 3D.,	695
FED2+ V22.0 Helical Extension Springs incl. Spring database, animation, relaxation,	675
FED3+ V21.5 Helical Torsion Springs incl. prod drawing animation 3D rectang wire	600 -
FED4 Version 8.0 Disk Springs	430 -
FED5 Version 17.0 Conical Compression Springs	741 -
FED6 Version 18.0 Nonlinear Cylindrical Compression Springs	634 -
FED7 Version 15.0 Nonlinear Compression Springs	
FED8 Version 7.4 Torsion Bar	317 -
FEDQ+ Version 7.0 Spiral Spring incl. production drawing, animation, Quick input	400 -
FED10 Version 4.5 Leaf Spring	490 500 -
ED10 Version 2.6. Spring Lock and Rushing	210
FED11 Version 3.0 Spring Lock and Busining	210
FED12 Version 4.2 Ways Spring Washers	220
FED13 Version 4.3 Wave Spring Washers	220
FED14 Version 2.7 Helical wave Spring	395
FED15 Version 1.7 Leal Spring (simple)	180
FED16 Version 1.4 Constant Force Spring	225
FED17 Version 2.1 Magazine Spring	/25
GEO1+ V7.5 Cross Section Calculation Incl. profile database	294
GEO2 V3.3 Rotation Bodies	194
GEO3 V4.0 Hertzian Pressure	205
GEO4 V5.3 Cam Software	265
GEO5 V1.0 Geneva Drive Mechanism Software	218
GEO6 V1.0 Pinch Roll Overrunning Clutch Software	232
GEO7 V1.0 Internal Geneva Drive Mechanism Software	219
GR1 V2.2 Gear construction kit software	185
GR2 V1.2 Eccentric Gear software	550,-
HPGL-Manager Version 9.1	383
LG1 V7.0 Roll-Contact Bearings	296
LG2 V3.1 Hydrodynamic Plain Journal Bearings	460
SR1 V24.3 Bolted Joint Design	640
SR1+ V24.3 Bolted Joint Design incl. Flange calculation	750
TOL1 V12.0 Tolerance Analysis	506
TOL2 Version 4.1 Tolerance Analysis	495
TOLPASS V4.1 Library for ISO tolerances	107
TR1 V6.4 Girder Calculation	757
WL1+ V21.8 Shaft Calculation incl. Roll-contact Bearings	945
WN1 V12.4 Cylindrical and Conical Press Fits	485
WN2 V11.2 Involute Splines to DIN 5480	250
WN2+ V11.2 Involute Splines to DIN 5480 and non-standard involute splines	380
WN3 V 6.0 Parallel Key Joints to DIN 6885, ANSI B17.1, DIN 6892	245
WN4 V 6.1 Involute Splines to ANSI B 92.1	276
WN5 V 6.1 Involute Splines to ISO 4156 and ANSI B 92.2 M	255
WN6 V 4.1 Polygon Profiles P3G to DIN 32711	180
WN7 V 4.1 Polygon Profiles P4C to DIN 32712	175
WN8 V 2.6 Serration to DIN 5481	195
WN9 V 2.4 Spline Shafts to DIN ISO 14	170
WN10 V 4.4 Involute Splines to DIN 5482	260
WN11 V 2.0 Woodruff Key Joints	240
WN12 V 1.2 Face Splines	256
WN13 V 1.0 Polygon Profiles PnG	238
WN14 V 1.0 Polygon Profiles PnC	236
WNXE V 2.3 Involute Splines – dimensions, graphic, measure	375
WNXK V 2.2 Serration Splines – dimensions, graphic, measure	230
WST1 V 10.2 Material Database	235
ZAR1+ V 26.7 Spur and Helical Gears	1115
ZAR2 V8.2 Spiral Bevel Gears to Klingelnberg	792

ZAR3+ V10.4 Cylindrical Worm Gears	620
ZAR4 V6.3 Non-circular Spur Gears	1610
ZAR5 V12.4 Planetary Gears	1355
ZAR6 V4.3 Straight/Helical/Spiral Bevel Gears	585
ZAR7 V2.3 Plus Planetary Gears	1380
ZAR8 V1.9 Ravigneaux Planetary Gears	1950
ZAR9 V1.0 Cross-Helical Screw Gears	650
ZARXP V2.6 Involute Profiles - dimensions, graphic, measure	275
ZAR1W V2.6 Gear Wheel Dimensions, tolerances, measure	450
ZM1.V3.0 Chain Gear Design	326
ZM2.V1.0 Pin Rack Drive Design	320
ZM3.V1.0 Synchronous Belt Drive Design	224

PACKAGES	EUR
HEXAGON Mechanical Engineering Package (TOL1, ZAR1+, ZAR2, ZAR3+, ZAR5, ZAR6, WL1+, WN1,	
WN2+, WN3, WST1, SR1+, FED1+, FED2+, FED3+, FED4, ZARXP, TOLPASS, LG1, DXFPLOT, GEO1+,	8,500
TOL2, GEO2, GEO3, ZM1, ZM3, WN6, WN7, LG2, FED12, FED13, WN8, WN9, WN11, DI1, FED15, GR1)	
HEXAGON Mechanical Engineering Base Package (ZAR1+, ZAR3+, ZAR5, ZAR6, WL1+, WN1, WST1,	4 000
SR1+, FED1,+, FED2+, FED3+)	4,900
HEXAGON Spur Gear Package (ZAR1+ and ZAR5)	1,585
HEXAGON Planetary Gear Package (ZAR1+, ZAR5, ZAR7, ZAR8, GR1)	3,600
HEXAGON Involute Spline Package (WN2+, WN4, WN5, WN10, WNXE)	1,200
HEXAGON Graphic Package (DXF-Manager, HPGL-Manager, DXFPLOT)	741
HEXAGON Helical Spring Package (FED1+, FED2+, FED3+, FED5, FED6, FED7)	2,550
HEXAGON Complete Spring Package (FED1+, FED2+, FED3+, FED4, FED5, FED6, FED7, FED8,	4,985
FED9+, FED10, FED11, FED12, FED13, FED14,, FED15, FED16, FED17)	
HEXAGON Tolerance Package (TOL1, TOL1CON, TOL2, TOLPASS)	945
HEXAGON Complete Package (All Programs)	14,950

Quantity Discount for Individual Licenses

Licenses	2	3	4	5	6	7	8	9	>9
Discount %	25%	27.5%	30%	32.5%	35%	37.5%	40%	42.5%	45%

Network Floating License

Licenses	1	2	3	4	5	6	78	911	>11
Discount/Add.cost	-50%	-20%	0%	10%	15%	20%	25%	30%	35%
(Negative Discount means additional east)									

(Negative Discount means additional cost)

Language Version:

- German and English : all Programs

- French: FED1+, FED2+, FED3+, FED4, FED5, FED6, FED7, FED9+, FED10, FED13, FED14, FED15, TOL1, TOL2.

- Italiano: FED1+, FED2+, FED3+, FED4, FED5, FED6, FED7, FED9+, FED13, FED14, FED17.

- Swedish: FED1+, FED2+, FED3+, FED5, FED6, FED7.
- Portugues: FED1+, FED17

- Spanish: FED1+, FED2+, FED3+, FED17

Updates:

Software Update (software Win32/64 + pdf manual) 40 EUR

Software Update (software 64-bit Win + pdf manual) 50 EUR

Update Mechanical Engineering Package: 800 EUR, Update Complete Package: 1200 EUR **Maintenance contract** for free updates: annual fee: 150 EUR + 40 EUR per program

Hexagon Software Network Licenses

Floating License in the time-sharing manner by integrated license manager.

Conditions for delivery and payment

Delivery by Email or download (zip file, manual as pdf files): EUR 0.

General packaging and postage costs for delivery on CD-ROM: EUR 60, (EUR 25 inside Europe) Conditions of payment: bank transfer in advance with 2% discount, or PayPal (paypal.me/hexagoninfo) net. After installation, software has to be released by key code. Key codes will be sent after receipt of payment.