HEXAGON Newsletter 185

by Fritz Ruoss

ZM2 Software for pin rack drives

ZM2 is a new software for calculating pin rack gears. A pin rack is a simple rack with bolts welded in between two metal sheets (instead of involute teeth). The drive wheel is a sprocket according to ISO 606 or DIN 8187/8188. The dimensions can be selected from the database or you can define special dimensions yourself. The dimensions of the pin rack correspond to the dimensions of the corresponding chain. As an alternative to a pin rack, a chain can be clamped in linear fashion. The sprocket for the rack toothing must be a little thinner than for a chain drive. Because of this, and above all because there is usually only one tooth in mesh with the pibn rack, the strength and hardness of the sprocket must be higher than when used as a chain sprocket. ZM2 calculates Hertzian pressure between the pin rack and the sprocket as well as the shear stress and pressure of the pin and the pin rack.

Z M2 pin racl	c drive	2 -	aw40b.zm2					-	- [) X
<u>File Edit V</u> iew	<u>C</u> A	D	<u>S</u> TL <u>D</u> atal	base D <u>o</u> cument	O <u>L</u> E	<u>H</u> elp	p			
sprocket 1 72B-1 - ISO 606	bff= 55,	5		pin rack 2				driving, load	d, safety	
no. of teeth	z		17	no. of teeth	z		17	P	kW	0,550
pitch	ρ	in.	4,500*	pitch	ρ	mm	114,300	т	Nm	25010
roller diameter	d1	in.	2,850*	pin diameter	đ1	mm	72,390	n	1/min	0,21
face width	pu	тт	54,76 55,5	bolt diameter	d2	mm	44,480	2	mm	311,02
pitch diamter	đ	тт	622,042	face width	bf	mm	68,58	v	m/min	0,41
root diameter	ďľ	тт	549,2549,7	plate thickness	s	mm	16,00	Ft	N	80413
pitch angle	tau	•	21,18	pin rack height	h2	mm	103,60	KA		2
tip diameter	da	тт	674,7 692,5	pin rack length	lts	mm	1943,1	Fimax	N	160825
diameter groove	dg	тт	489,7500,7	pin rack width	bts	mm	100,6	Fuchain	N	310777
roller root radius	ri	тт	36,56 36,84	•				tau d2	MPa	103
tooth flank radius	re	mm	165 271,6					note some	MDa	4370
tooth chamfer radius	nx 🛛	mm	>=114,3					p Heru		1379
chamfer	ba	тт	14,29	Error : SB < 7 ! (3,9)				3 B 5 O	Fu / Flmax	3,00
tooth chamfer radius	ra	тт	0,56	Error : SD < 5 ! (1,9)				50	Par Panak	1,000
roller root angle	alpha	•	114,7 134,7							
flank angle	gamma	•	12,05 22,06							

An animation can be used to simulate the rotation of the sprocket and the linear movement of the pin rack on the screen.

With ZM2 you can also calculate a gear with a pin wheel (pins on a bolt circle) instead of a pin rack.

The pin wheel can be an external gear wheel or an internal gear wheel. For the internal gear, the number of bolts is entered as negative (analogous to the negative number of teeth on a ring gear). ZM2 is now available for delivery at a price of 320 euros.

ZM1, ZM2: breaking force FB of chain

There are no material data for ZM1, the safety is calculated from the breaking force of the chain. If the shear stress of the pin of a chain link is calculated from this, the values are quite high: With tauB = FB / (Ad2), values of up to 750 MPa result. This must be taken into account when selecting the material for the bolts or journals for fuel gearing.

As a rule, no rollers are used for the headstock, with continuous bolts the bolt diameter d2 can be set equal to the roller diameter. This roughly halves the maximum shear stress of the bolts to a tolerable value.

DI1: Quick3 View

In the Quick3 view, the stretched cord diameter has been added to the cross-section reduction by stretching as well as the squeeze if stretched or not in mm.

Groove volume min / max, O-ring volume min / max and O-ring weight have been added to the printout.

DI1: stretch and compression of O-ring, error in the axial sealing application

When an O-ring is pulled onto a piston or stretched in the groove, its cord diameter is reduced. When the O-ring is compressed, however, its cord diameter does not increase, instead it finds its place in the groove. In the case of axial sealing, DI1 incorrectly calculated increased cord diameter by negative stretching if the inside diameter of the groove was smaller than the inside diameter of the O-ring. This resulted in too high values for the squeeze. If the O-ring is compressed, it seeks its place in the groove. Therefore, the groove filling is no longer calculated from the O-ring crosssection and the groove cross-section, but from the O-ring volume and the groove volume. If this error occurs with your DI1 software, please report. You will immediately receive a free update to the latest version.

FED1+ 2+ 3+ 5 6 7 8 17: Load cycles required for fatigue strength safety

For some time now it has been possible to enter the required number of load cycles. The only purpose of this is to compare the calculated number of load cycles with the required number and to output an error message if it is exceeded. The spring is fatigue safe with 10 million load cycles. What happens now if you enter more than 10 million load cycles required? So far, a lower permissible stress variation has also been calculated from this, which provides additional safety. But if you assume that the spring, if it can withstand 1E7 load cycles, can also withstand an infinite number of load cycles, then it does not matter whether you enter 10 million load cycles or 10 billion load cycles. In the new versions there is now an option "Calc Nreq> 10E6?", Then a virtual number of load cycles is calculated beyond 1E7, this is an additional safety compared with 1E7 cycles. Otherwise it is assumed that the spring can withstand an infinite number of load cycles if it can withstand at least 10 million load cycles.

FED14	- 🗆 X
Calculation Method R=(n*z*0.516-0.456)*E*b/n^2*z^3*(t/Dm)^3 Smalley: R=1/K*E*b/n*z^4*(t/Dm)^3*De/Di R=0.516*E*b/n*z^4*(t/Dm)^3 R=0.417*E*b/n*z^4*(t/Dm)^3*De/Di R=sum((n*z*0.516-0.456)*E*bi/n^2*z^3*(t/Dmi)^3) 	Predimension number of waves z 3.5 Dm /b 12 b /t 7 Sigma z / sigma 2 1,5 sc / s2 2
Units metric/imperial metric (mm, Warnings Display all w Calc OK	CAD resolution 3 ° N, MPa, Nmm, °C) ~ arnings ~ Cancel <u>H</u> elp Text Aux. <u>I</u> mage

FED14: No-Show Calculation Formula

Because there is no binding standard for calculating helical wave springs, you can choose between different calculation methods: as a flat wave strip with different methods for taking the coil diameter into account, or with formulas and table values according to Smalley. The display of the calculation formula in the Quick3 view can now be switched off. Useful when forwarding the Quick3 printout, for example from the spring manufacturer to the customer, in order to avoid queries.

GEO1, TR1: Switching between yz and xy coordinate systems

TR1	_		×
add shaft gravitational load as path load calculate buckling ?			
calculate bending vibrations to Dunkerley			
no. of segments for calculation (grid size)	250 <		
iteration factor f eps.	0,001 <		
polygon resolution for arc calculation	30 deg	, <	
coordinate system	yz 🗸		
OK Cancel	xy Help		

When calculating the beam, the beam length is usually defined in the x direction and the cross section of the beam in yz coordinates. If you get confused when entering the cross-section coordinates y / z because you are used to x / y coordinates, you can now switch to the xy coordinate system.

TR1			_		×	TR1			_		×
<u>E</u> dit <u>V</u> iew	E <u>x</u> cel					<u>E</u> dit <u>V</u> iew	E <u>x</u> cel				
<+ +	-	mm	<> inch	Ca	alc	<+ +	-	mm	I <> inch	Calc	:
i	y [mm]	z [mm]	phi [°]	^		i	x [mm]	y [mm]	phi [°]	^	
1	0	-21	0			1	0	-21	0		
2	1,039	-21	82,05			2	1,039	-21	82,05		
3	4,901	-17,64	0			3	4,901	-17,64	0		
4	6,627	-5,309	-82,05			4	6,627	-5,309	-82,05		
5	10,49	-1,95	0			5	10,49	-1,95	0		
6	69,51	-1,95	-82,05			6	69,51	-1,95	-82,05		
7	73,37	-5,309	0			7	73,37	-5,309	0		
8	75,10	-17,64	82,05			8	75,10	-17,64	82,05		
9	78,96	-21	0			9	78,96	-21	0		
10	80	-21	0			10	80	-21	0		
11	80	21	0			11	80	21	0		
12	78,96	21	82,05			12	78,96	21	82,05		
13	75,10	17,64	0			13	75,10	17,64	0		
14	73,37	5,309	-82,05			14	73,37	5,309	-82,05		
15	69,51	1,95	0			15	69,51	1,95	0		
16	10,49	1,95	-82,05			16	10,49	1,95	-82,05		
17	6,627	5,309	0			17	6,627	5,309	0		
18	4,901	17,64	82,05	Υ		18	4,901	17,64	82,05	~	
ОК	Can	cel A	ux. <u>I</u> mage	Hel	p Text	ОК	Car	ncel /	Aux. <u>I</u> mage	<u>H</u> elp	Text

WNXK, WNXE: inner diameter of the shaft and outer diameter of the hubIf you have entered the inner diameter of the shaft and the outer diameter of the hub, these are now drawn in and dimensioned in the production drawing.

SR1: Database material plates / nuts: Brass and bronze added

CuZn39Pb3F50, G-CuSn12Pb and CuSn6 R980 have been added at the pressung.dbf material database for clamping plates and nuts.

GEO2: STL half-section

A 3D model of the calculated rotationally symmetrical body can be printed out in half-section. Helpful for the quick production of cutaway models with a 3D printer.

Corona currently in January / February 2021

When authorities buy ...

.. then it usually becomes more expensive and takes longer. Although the EU was the first to order large-scale orders from Biontech, it is the last to be delivered. After 2 months, less than 1% of the ordered quantity has been delivered. There is criticism from all sides that too little was ordered. This criticism is completely unjustified, rather too much and hastily ordered. The delivery date is the problem. But the EU is actually still doing what the smart Biontech boss recommends: order more. Another 300,000,000 vaccination doses for > 3,000,000 euros. The EU president proudly announces that the EU can now make 80% of all residents happy with a Biontech corona vaccination. And another 300 million doses have been ordered from Curevac. And from Moderna. And from AstraZeneca. And from Sogefi. And from Johnson & Johnson. AstraZeneca tried the same trick, but instead of reordering, they were criticized. Others ordered fewer and later and received their goods earlier. But: It was of no use to the State of Israel to snatch the first vaccines produced from other countries. When vaccination started in December 2020, the number of new infections in Israel rose exponentially. The 7-day incidence has only declined since the airports were closed. But still over 200 (270 on February 22nd, 2021), the same as when the vaccination started on December 27th, 2020.

Contergan - aftermath

Every drug has side effects. Many are not discovered until much later, for example cancer or damage to the genetic make-up. The harmless sedative "Contergan" was considered to be particularly safe in terms of side effects. Only after 9 months did the side effects come to day light. It took another 3 years until thalidomide was identified as the cause of the malformations in newborns.

When authorities hand out gifts ...

...then give a voucher to pick up a gift for a nominal fee.

In Corona times, everyone buys online to avoid contact. Only the German federal government is sending millions of citizens at risk of corona to the pharmacies to pick up 6 protective masks and to put 2 euros on the table. It would have been smarter to put the 6 paper masks in the envelope instead of a forgery-proof voucher.

HEXAGON PRICE LIST 2021-03-01

Base price for single licences (perpetual)	EUR
DI1 Version 2.0 O-Ring Seal Software	190
DXF-Manager Version 9.1	383
DXFPLOT V 3.2	123
FED1+ V31.2 Helical Compression Springs incl. spring database, animation, relax., 3D.,	695
FED2+ V21.9 Helical Extension Springs incl. Spring database, animation, relaxation,	675
FED3+ V21.4 Helical Torsion Springs incl. prod.drawing. animation. 3D. rectang.wire	600
FED4 Version 7.8 Disk Springs	430 -
FED5 Version 16.7 Conical Compression Springs	741 -
FED6 Version 17.2 Nonlinear Cylindrical Compression Springs	634 -
FED7 Version 14.3 Nonlinear Compression Springs	660 -
FED8 Version 7.4 Torsion Bar	317 -
EED0 Version 6.4 Spiral Spring	304
EED10 Version 4.4 Leaf Spring	500 -
EED10 Version 3.6. Spring Lock and Bushing	210
EED12 Version 2.7 Electomor Compression Spring	210
EED12 Version 4.2. Wave Spring Weeberg	220
FED13 Version 2.6. Helicel Wave Spring	220
FED14 Version 2.0 Helical wave Spring	395
FED15 Version 1.6 Leal Spring (simple)	180
FED16 Version 1.3 Constant Force Spring	225
FED17 Version 2.1 Magazine Spring	725
GEO1+ V7.5 Cross Section Calculation Incl. profile database	294
GEO2 V3.3 Rotation Bodies	194
GEO3 V3.3 Hertzian Pressure	205
GEO4 V5.2 Cam Software	265
GEO5 V1.0 Geneva Drive Mechanism Software	218
GEO6 V1.0 Pinch Roll Overrunning Clutch Software	232
GEO7 V1.0 Internal Geneva Drive Mechanism Software	219
GR1 V2.2 Gear construction kit software	185
GR2 V1.1 Eccentric Gear software	550,-
HPGL-Manager Version 9.1	383
LG1 V6.6 Roll-Contact Bearings	296
LG2 V3.1 Hydrodynamic Plain Journal Bearings	460
SR1 V23.7 Bolted Joint Design	640
SR1+ V23.7 Bolted Joint Design incl. Flange calculation	750
TOL1 V12.0 Tolerance Analysis	506
TOL2 Version 4.1 Tolerance Analysis	495
TOLPASS V4.1 Library for ISO tolerances	107
TR1 V6.3 Girder Calculation	757
WL1+ V21.6 Shaft Calculation incl. Roll-contact Bearings	945
WN1 V12.3 Cylindrical and Conical Press Fits	485
WN2 V10.3 Involute Splines to DIN 5480	250
WN2+ V10.3 Involute Splines to DIN 5480 and non-standard involute splines	380
WN3 V 6.0 Parallel Key Joints to DIN 6885, ANSI B17.1, DIN 6892	245
WN4 V 5.1 Involute Splines to ANSI B 92.1	276
WN5 V 5.1 Involute Splines to ISO 4156 and ANSI B 92.2 M	255
WN6 V 4 1 Polygon Profiles P3G to DIN 32711	180 -
WN7 V 4 1 Polygon Profiles P4C to DIN 32712	175 -
WN8 V 2.5 Serration to DIN 5481	170.
WNO V 2.4 Spline Shafts to DIN ISO 14	170 -
WN10 V A 3 Involute Splines to DIN 5482	260 -
WN11 V 2 0 Woodruff Key Joints	200
WN12 V 1 2 Eaco Splings	240
WNINIZ V 1.2 Late Oplines WN12 V 1.0 Dolygon Profiles PnC	200 220
WNITE VITU FUILUES FILE WNITE VITU FUILUES FILE WNITE VITU FUILUES FILE	238
WINTA V 1.0 POLYGUIT PTOILLES PTIC	230
VVIVAE V 2.3 Involute Splines – almensions, graphic, measure	3/5
VVINAN V 2.2 Serration Splines – dimensions, graphic, measure	230
VVS11V10.2 Material Database	235
ZART+ V 26.7 Spur and Helical Gears	1115
ZARZ V8.1 Spiral Bevel Gears to Klingelnberg	792

ZAR3+ V10.4 Cylindrical Worm Gears	620
ZAR4 V6.1 Non-circular Spur Gears	1610
ZAR5 V12.3 Planetary Gears	1355
ZAR6 V4.2 Straight/Helical/Spiral Bevel Gears	585
ZAR7 V2.2 Plus Planetary Gears	1380
ZAR8 V1.8 Ravigneaux Planetary Gears	1950
ZAR9 V1.0 Cross-Helical Screw Gears	650
ZARXP V2.6 Involute Profiles - dimensions, graphic, measure	275
ZAR1W V2.5 Gear Wheel Dimensions, tolerances, measure	450
ZM1.V3.0 Chain Gear Design	326
ZM2.V1.0 Pin Rack Drive Design	320

PACKAGES	EUR
HEXAGON Mechanical Engineering Package (TOL1, ZAR1+, ZAR2, ZAR3+, ZAR5, ZAR6, WL1+, WN1, WN2+, WN3, WST1, SR1+, FED1+, FED2+, FED3+, FED4, ZARXP, TOLPASS, LG1, DXFPLOT, GEO1+, TOL2, GEO2, GEO3, ZM1, WN6, WN7, LG2, FED12, FED13, WN8, WN9, WN11, DI1, FED15, WNXE, GR1)	8,500
HEXAGON Mechanical Engineering Base Package (ZAR1+, ZAR3+, ZAR5, ZAR6, WL1+, WN1, WST1, SR1+, FED1,+, FED2+, FED3+)	4,900
HEXAGON Spur Gear Package (ZAR1+ and ZAR5)	1,585
HEXAGON Planetary Gear Package (ZAR1+, ZAR5, ZAR7, ZAR8, GR1)	3,600
HEXAGON Involute Spline Package (WN2+, WN4, WN5, WN10, WNXE)	1,200
HEXAGON Graphic Package (DXF-Manager, HPGL-Manager, DXFPLOT)	741
HEXAGON Helical Spring Package (FED1+, FED2+, FED3+, FED5, FED6, FED7)	2,550
HEXAGON Complete Spring Package (FED1+, FED2+, FED3+, FED4, FED5, FED6, FED7, FED8, FED9, FED10, FED11, FED12, FED13, FED14,, FED15, FED16, FED17)	4,985
HEXAGON Tolerance Package (TOL1, TOL1CON, TOL2, TOLPASS)	945
HEXAGON Complete Package (All Programs)	14,950

Quantity Discount for Individual Licenses

Licenses	2	3	4	5	6	7	8	9	>9
Discount %	25%	27.5%	30%	32.5%	35%	37.5%	40%	42.5%	45%

Network Floating License

Licenses	1	2	3	4	5	6	78	911	>11
Discount/Add.cost	-50%	-20%	0%	10%	15%	20%	25%	30%	35%
			~						

(Negative Discount means additional cost)

Language Version:

- German and English : all Programs
- French: FED1+, FED2+, FED3+, FED4, FED5, FED6, FED7, FED9, FED10, FED13, FED14, FED15, TOL1, TOL2.
- Italiano: FED1+, FED2+, FED3+, FED4, FED5, FED6, FED7, FED9, FED13, FED14, FED17.
- Swedish: FED1+, FED2+, FED3+, FED5, FED6, FED7.
- Portugues: FED1+, FED17
- Spanish: FED1+, FED2+, FED3+, FED17

Updates:

Update prices	EUR
Software Update (software Win32/64 + pdf manual)	40
Software Update (software 64-bit Win + pdf manual)	50

Update Mechanical Engineering Package: 800 EUR, Update Complete Package: 1200 EUR **Maintenance contract** for free updates: annual fee: 150 EUR + 40 EUR per program

Hexagon Software Network Licenses

Floating License in the time-sharing manner by integrated license manager.

Conditions for delivery and payment

Delivery by Email or download (zip file, manual as pdf files): EUR 0.

General packaging and postage costs for delivery on CD-ROM: EUR 60, (EUR 25 inside Europe) Conditions of payment: bank transfer in advance with 2% discount, or PayPal (paypal.me/hexagoninfo) net. After installation, software has to be released by key code. Key codes will be sent after receipt of payment.

HEXAGON Industriesoftware GmbH

E-Mail: info@hexagon.de Web: www.hexagon.de