by Fritz Ruoss

FED1+: (Lc = x.x) in Production Drawing

If production compensation is defined by number of coils (n), block length cannot be a control dimension. Block length Lc is printed without tolerance in this case. Additionally, it is drawn in brackets in the latest version of FED1+.

FED15, FED16: Input Material Data

As alternative to pick from database, you can input base properties of material (E module, tensile strength, yield strength, permissible bending stress) directly now.

FED15 material	_ 🗆 ×
20: EN 10089 52CrMoV4 hot-rolled spring steel 1.7701	Database
Select C Database fedwst.dbf (priority) C Database fedwst.dbf (complete) C others	tolerance t, W(b) EN 10140-A (t<= 10mm, W<600mm) ▼ t = 36 ± 0.090 mm W = 80 ± 0.500 mm
material EN 10089 52CrMoV4 modulus of elasticity 206000 MPa density 7,85 kg/dm³ tensile strength 1450 MPa adm. bending stress 1088 MPa	surface O drawn O rolled O ground O shaved
OK	Cancel <u>H</u> elp

FED3+: Tolerance of bending angle corrected

📶 FED:	3+ c:\temp\outwin.txt				_ 🗆 ×
<u>File E</u> d	lit				
	clamped leg: fixed clamped, bent	t-up, int			_
	bending radius	r	mm	2 + 1,00	
	tolerance bending angle A phi	Aphi1	*	± 6,0	
	leg length	L	mm	50 ± 1,48	
	moved leg: fixed clamped, tanger	ntial			
	leg length	L		50 ± 1,48	
					-

Tolerance of bending angle according to quality 1,2,3 of DIN 2194 of torsion springs with bent legs was not calculated correctly. Tolerance Aphi is listed in the standard printout only, not in production drawing nor Quick view. Thanks to Mr. Demmelbauer of Hutter & Schrantz steel springs for hint and documents.

ZAR1+ .. ZAR8: Modifications in Material database

Properties were slightly modified for nodular cast iron:

EN-GJS-400: HB from 180 into 170

EN-GJS-600: E-Module from 180 GPa into 174 Gpa

EN-GJS-1000: E-Module from 190 GPa into 168 GPa, μ from 0.29 into 0.27, density from 7.2 into 7.1.

Thanks to Mr. Schulze of BS Technik for hints and documents.

ZAR1+,ZAR2,ZAR5,ZAR6,ZAR7,ZAR8: Load spectrum according to ISO 6336-6

ZAR1+
application factor KAH and KAF
Input KAH and KAF
C calculate KAH and KAF of load spectrum
Calculate life expectation
O Input limited-life factors ZNT, YNT
load spectrum Input T + n + %t
Logarithmic scale for load cycles N
Sort Torque Ti ?
Calculation load spectrum KA + Miner: ISO 6336-6:2006
KA: ISD 6336-6 (2006), Niemann (1986) Calculation Load Collective KA KA + Miner: ISD 6336-6(2006
OK Cancel Calc

Until now, our ZAR-Software used calculation method according to Niemann to calculate application factors KA from load spectrum. This method is described in ISO 6336-6 annex A with purpose of a first estimation only. So we have added the preferred method to Palmgren-Miner as described in ISO 6336-6. Select both methods at Edit\Load spectrum\Config.

Calculation must be separate for gear 1 and gear 2 to this method. Gear 2 differs in speed and number of cycles by transmission ratio and number of tooth contacts per rotation:

N2 = N1 * z1/z2 * e2/e1

with 1 = pinion, 2 = wheel, N = number of cycles, z = number of teeth, e = tooth contacts perrotation

ZAR1+,ZAR2,ZAR5,ZAR6,ZAR7,ZAR8: Input Period

ZAR1+				_ 🗆 ×
<u>F</u> ile <u>E</u> dit <u>V</u> iew				
<+ + -	Nm <> lbfi	n	period 30	an. 💌
Bin no.	Torque Nm	Load cycles		
1	1400	2880		
2	1375	2880		

New input is period time for the load spectrum (including idle time). Idle time is calculated as difference of period and sum of load spectrum. If input is 0 or less than sum of load spectrum, idle time is 0 and period is set to sum of load spectrum. Normally, required lifetime of the gear is set as period time. But you can also describe the load spectrum for a period of days or hours. Period time unit can be set to seconds, minutes, hours, days or years.

ZAR1+,ZAR2,ZAR5,ZAR6,ZAR7,ZAR8: Load spectrum: lifetime to ISO 6336-6

Both calculation methods (KA and Miner) can be compared by comparing the calculated lifetime. Because idle time can be considered now in Miner calculation, but not in KA calculation, one must compare lifetime at 100% duty cycle.

Calculation of lifetime by Miner sum considers all load bins, KA calculation considers only bins with torque higher than 50% of nominal torque or until the sum of cycles is higher than fatigue safe limit of the S/N curve.

Application example table 2 of ISO 6336-6 calculates 3900 hours until pitting for the pinion to KA method, and 6000 hours according to Miner method. If idle time of 6E6 s in 70 days is considered, time until pitting (gear1) is 5455621 hours = 630 years. ISO 6336 annex C calculates 30 years with a safety factor of 1.428. Idle time of 99,9% is extremely high in this example, in 30 years the gear is on duty for 10 days only.

ZAR1+	⊢ Spur and	Helic	al Gear	s -	6336	_6.za	r i			_ 🗆 >	×
<u>F</u> ile <u>E</u> dit	⊻iew <u>C</u> AE) STI	<u>D</u> atab	ase	Doc	ument	<u>o</u> le	<u>H</u> elp			
load spe	ectrum	Case	e carbur	izec	1				i	T [Nm]	
N sum	3,83E3	NOF	1	E3					1	25578	Td
N eqF	2,52E3	NnF	3	E6					2	25501	C
N eqH	2,52E3	рF	8	,7					3	25423	1
KAF	0,81	NOH	1	E5					4	25345	1
KAH	0,80	NnH	5	E7					5	25268	£
		pН	6	,6					6	25191	8
.									7	25113	_1
load spe	ectrum	_							8	25028	8
TN	Nm 2540	0							9	24935	٤
TeqF	Nm 2069	3							10	24834	1
TeqH	Nm 2029	4							11	24726	1
TnF	Nm 2851	7							12	24609	1
TnH	Nm 1562	5							13	24478	1
TOF	Nm 7157	7							14	24330	1
TOH	Nm 4006	5							15	24168	1
KA SH	Nf tE		near 1	ne	ar 2	٦			16	23989	1
КАН			0.80	Tr	1.80	-			17	23796	3
I SH			0,00	$\pm \frac{1}{2}$	1.87	-			18	23579	1
Cuelee t	to Epiluro N	เก		6		-			19	23338	3
Time to		107 k	2000	12	750	-			20	23075	£
		J 76 H	0.04	13	109	-			21	22788	3
			1 20		101	-			22	22478	ę
		107	1,38		,44				23	22137	1
Uycles f	to Failure M	lit⊢	>1,UE1	y>1	,UE1	U			24	21765	2

ZAR1+,ZAR2,ZAR5,ZAR6,ZAR7,ZAR8: Load spectrum diagrams

Limits of the y axis (torque) has been changed, so that S/N curve can be drawn in any case. Equivalent S/N curve of the load spectrum is no longer drawn nor the corresponding parameters TnFeq, TnHeq, T0Feq and T0Heq, as not mentioned in ISO 6336-6. Scale of the x axis (cycles) can be drawn linear or logarithmic. Program calculates torque for safety factors SH=1 and SF=1 in an iteration, as well as static safety SHplast and SFplast for the highest (1st) torque of the load spectrum.

<mark>a z</mark> Z	AR1+ c:\temp\outwi	n.txt					_ 🗆 ×
<u>F</u> ile	<u>E</u> dit						
	¦ Load spec	trum of ISO 6336-0	6:2006 Table (C.2 and C.	3	1	
	ZAR1+ cal	culates miner sum	and periods (to failure	(30 years)		
	+					+	
	torque T1(SF	=1, KA=1)	T1 SF1	Nm	28517		
	torque T1(SH	=1, KA=1)	T1 SH1	Nm	15625		
	safety plast	,T1=25423Nm	SFplast	Nm	2,80		
	safety plast	,T1=25423Nm	SHplast	Nm	1,24		
							•

ZAR1+,ZAR2,ZAR5,ZAR6,ZAR7,ZAR8: Input load bins with different speed

💦 item 13					×	ZAR1+				
O T, N		torque T1 24479	Nm Tn			<u>File E</u> dit <u>V</u> i <+ + Bin no. 1 2	ew Nm <> 1 Torque Nm 810 800	bfin	period 30000 % t (time share) 3,75 0,34	hour 💌
@ n, T, P, t	Cn CT ⊙P	rot.speed n 35 torque T 24479 power P 89,72	1/min Nm K₩	99,4 % 96,4 % 95,8 %		3 4 5 6 7 8	750 700 700 700 650 650	1850 2050 1700 1050 2250 1850	0,39 0,5 0,45 4,99 0,62 0,52	
	C t[s] ● [t[min] C t[h]	t 3777 t 62,95 t 1.049	s min h							
OK	Cancel	tooth contacts per/rotal period 30	nage Nm <>	lbfin 🔹		ОК	Cancel	Aux. Imag	e <u>H</u> elp Text	

In standard input of load spectrum, you can input torque or power and speed, program calculates and shows relation to nominal values in %.

At input "n,T,P,t" you enter speed, torque or power and time for each bin and program calculates cycles. These data have not been saved until now (T and N only), values of n,P,t cannot be recalculated if speed varies. Now, speed of each bin will be saved. If not saved, nominal speed is used for all bins.

Also at "Edit\Load Spectrum\Table" you can input speed for each bin.

ZAR1+,ZAR2,ZAR5,ZAR6,ZAR7,ZAR8: Load spectrum Export/Import

ZAR1+				- 🗆 ×
<u>F</u> ile <u>E</u> dit <u>V</u> iew				
Import KOL Export KOL	m <> lbfi	n	period 30000	hour 💌
Export/Start Excel	Nm	n 1/min	% t (time share)	
Import Excel		1050	3,75	
2 800		1700	0,34	

For exchange with MS-Excel a new Export/Import Excel has been added in the menu. Or you can use Copy and Paste for import/export of load spectrum tables with any Windows spreadsheet. Furthermore, you can import or export load bins by means of KOL file. The proprietary KOL format was extended by speed for each bin.

ZAR1+,ZAR2,ZAR5,ZAR6,ZAR7,ZAR8: Sort Load Spectrum

Loganumic scale for load cycles to	
Sort Torque Ti ?	

Until now, you had to input bins of load cycles in correct order, beginning with the highest torque. Now you can enter bins unsorted, and let sort by ZAR software.

ZAR1+,ZAR2,ZAR5,ZAR6,ZAR7,ZAR8: Load spectrum tables

1	ZAR1+	Spur	and H	elica	al Ge	ars	- lastk	.bs.zar										-	
<u>F</u> ile	<u>E</u> dit	⊻iew	<u>C</u> AD	STL	<u>D</u> at	abas(e D <u>o</u> c	ument	<u>O</u> LE <u>H</u> e	lp									
i	T [Nm]	N	n npm	i	SH2	ZNT	2 N2	NfH2	U(N2/NfH)N2 %	fH2 %	i	SF2	YNT:	2 N2	NfF2	U(N2/NfF)N2 %	fF2 %
1	810	7,09E7	1050	1	0,83	1,20	2,0E7	4,5B6	4,330	26,9	51,1	1	1,05	0,95	2,0E7	4,2E7	4,68E-1	26,9	89,8
2	800	1,04E7	1700	2	0,85	1,18	2,9 E 6	5,4B6	5,28E-1	4,0	6,2	2	1,06	0,94	2,9E6	6,2E7	4,65E-2	4,0	8,9
3	750	1,30E7	1850	3	0,88	1,14	3,6⊟6	8,7 B 6	4,14E-1	4,9	4,9	3	1,13	D,88	3,6 B 6	1,7E9	2,16E-3	4,9	0,4
4	700	1,85E7	2050	4	0,91	1,10	5,1B6	1,4E7	3,56E-1	7,0	4,2	4	1,22	0,82	5,1B6	1,0E10	5,09E-4	7,0	0,1
5	700	1,38E7	1700	5	0,91	1,10	3,8⊟6	1,4E7	2,76E-1	5,2	3,3	5	1,22	0,82	3,8 E 6	1,0E10	3,80E-4	5,2	0,1
6	700	9,43E7	1050	6	0,90	1,11	2,6E7	1,2E7	2,084	35,8	24,6	6	1,23	0,81	2,6E7	1,0E10	2,60E-3	35,8	0,5
7	650	2,51E7	2250	7	0,95	1,06	6,9 E 6	2,4E7	2,84E-1	9,5	3,4	7	1,31	0,76	6,9E6	1,0E10	6,93E-4	9,5	0,1
8	650	1,73E7	1850	8	0,94	1,06	4,8E6	2,3E7	2,04E-1	6,6	2,4	8	1,32	0,76	4,8E6	1,0E10	4,78E-4	6,6	0,1
sum		2,63E8		sun			7,3E7	Miner	8,477	100,0	100,0	sum			7,3E7	Miner	5,21E-1	100,0	100,0

Tables with intermediate results of load spectrum calculation to Palmgren-Miner can be listed in tables. Share of cycles (N %) and share of damage (tF %) is listed for each bin (similar as in FED1+ load spectrum). Share of damage for each bin is calculated as fi = Ui / Miner sum.

Cause 4 Miner sums have to be calculated (pitting, tooth root stress gear 1 and gear 2), you get a huge number of data that can be listed in 3 tables.

1	ZAR1+	Spur ar	nd Helio	cal G	iears	- la	stkbs	.zar													_ 🗆 ×
Eile	e <u>E</u> dit	⊻iew <u>C</u> ⁄	AD ST	LD	<u>)</u> ataba	ise D) <u>o</u> cum	ient	<u>o</u> le <u>H</u>	elp											
				_									_								
l	T [Nm]	N	n rpm	i	SH1	SH2	ZNT ⁴	I ZNT2	2 NfH1	NfH2	U(N1/NfH)	, U(N2/NfH)	l i	SF1	SF2	YNT [,]	1 YNT2	2 NfF1	NfF2	U(N1/NfF)	U(N2/NfF)
1	810	7,09E7	1050	1	0,83	0,83	1,20	1,20	4,568	4,586	1,57E1	4,330	1	1,14	1,05	0,88	0,95	1,8E9	4,2E7	3,93E-2	4,68E-1
2	800	1,04E7	1700	2	0,85	0,85	1,18	1,18	5,486	5,4B6	1,915	5,28E-1	2	1,15	1,06	0,87	0,94	2,7E9	6,2E7	3,91E-3	4,65E-2
3	750	1,30E7	1850	З	0,88	0,88	1,14	1,14	8,7B6	8,7B6	1,5	4,14E-1	з	1,22	1,13	0,82	0,88	1,0E10	1,7E9	1,30E-3	2,16E-3
4	700	1,85E7	2050	4	0,91	0,91	1,10	1,10	1,4E7	1,4E7	1,292	3,56E-1	4	1,31	1,22	0,76	0,82	1,0E10	1,0E10	1,85E-3	5,09E-4
5	700	1,38E7	1700	5	0,91	0,91	1,10	1,10	1,4E7	1,4E7	1,002	2,76E-1	5	1,32	1,22	0,76	0,82	1,0E10	1,0E10	1,38E-3	3,80E-4
6	700	9,43E7	1050	6	0,90	0,90	1,11	1,11	1,2E7	1,2E7	7,554	2,084	6	1,32	1,23	0,76	0,81	1,0E10	1,0E10	9,43E-3	2,60E-3
7	650	2,51E7	2250	7	0,95	0,95	1,06	1,06	2,4E7	2,4E7	1,030	2,84E-1	7	1,42	1,31	0,71	0,76	1,0E10	1,0E10	2,51E-3	6,93E-4
8	650	1,73E7	1850	8	0,94	0,94	1,06	1,06	2,3E7	2,3E7	7,38E-1	2,04E-1	8	1,42	1,32	0,70	0,76	1,0E10	1,0E10	1,73E-3	4,78E-4
su	m	2,63B8		sum	1					Miner	3,07E1	8,477	sum						Miner	6,14E-2	5,21E-1
1 -		-							-		-								-	-	

SR1+: Self-defined elasticity for calculation of deltaP

thickness L 10 mm	material 1.0570 St 52-3	
database clamp.plate (Washer)	pG 450 MPa	
	Re (Rp0.2) 340 MPa	
_	alpha T 0.0115E-3 mm/K <	
I input Elasticity ?	Young`s modulus 210000 MPa <	
Elasticity delta U,5E-6 mm/N <	pGKr 272 MPa <	
	Tmax 0 °C	

At input of clamping plates, you can input elasticity as alternative to calculation by SR1+. Now it was found that self-defined elasticity was considered only if "deformation sleeve" was configured. New version now considers self-defined elasticity for both, calculation by deformation sleeves and by deformation cone. Thanks to Mr. Huegl of Leadec Engineering for hint and documents.

WST1: Calculate size factor from size exponent and material thickness

🜌 ₩ST1 - E295 (St 50) 1.0050 📃 🗖 🗙						
✓ size coeffizient b0 = 1 + bexp * [1 - log (d)] ?						
thickness d 3 mm <						
size exponent bexp 0,37 <						
b0 = 1 + bexp * [1 - log (d)]						
b0 (3mm) = 1,193						
Rm (10mm) = 490 MPa						
Rm (3mm) = 584,8 MPa						
DK Cancel ? mm <> inch						

Until now, WST1 calculated size factor for material groups 1 to 27 (steel) to the formula b0=1+0.2*[1-log(d)]. Material properties of the database are based on material thickness (material diameter) of 10 mm. Cause size factor for different materials and different heat treatment differs, now you can input material exponent for calculation of the size factor. First you have to hook on that size factor must be considered. Material exponent for steel lies between 0.1 and 0.4. Sigma(d) = Sigma(d10) * b0(d) b0(d) = 1 + bexp [1 - log (d)]

WST1: Fatigue strength 1.4310 and 1.4568

Fatigue strength stress limits for 1.4310 and 1.4568 have been added, so that Smith-Diagram, Haigh-Diagram, Goodman-Diagram and S/N curve can be drawn for these materials.

WST1: Nodular cast iron: new materials and modifications

Modifications of E module and stress limits for this materials: EN-GJS-400, EN-GJS-500, EN-GJS-700, EN-GJS-800 New materials in WST1: EN-GJS-1000-5, EN-GJS-1050-6, EN-GJS-1200-2, EN-GJS-1400-1, EN-GJV-400 LG1, ZAR5, ZAR7, ZAR8, WL1+: Full cplm. needle bearing and roller bearing

If not enough space for roller bearings with inner and outer ring, bearing of planet wheels can be a cylindrical roller bearing without outer ring, or needles only between planet bolt and planet wheel bore without cage.

🔕 bearing	load Fr = 1	62793 N	Fa =	0 N ZA	R5 databas	se Full cplm	.cyl.roller be	earing		_ 0	X
<u>F</u> ile ⊻iew	<u>H</u> elp										
M	•	•		M	<u>S</u> earch	Search <u>N</u> ext	37 /79	OK	Cancel		
NAME		DI		DEW	В	С	CO	CU	м	DI1	
RSL1850)14-A		70	100,28	3 54	233000	350000	0	1,12		
RSL1822	214-A		70	111,01	31	181000	223000	0	0,98		
RSL1830)15-A		75	107,9	30	162000	194000	0	0,73		
RSL1850)15-A		75	107,9	54	245000	385000	0	1,46		
RSL1822	215-A		75	115,78	31	187000	236000	0	1,03		
RSL1830)16-A		80	116,99	34	173000	224000	0	0,97		-
•										►	

For full compl. needle bearings, clearance between rollers is calculated by the program (pitch diameter clearance TES = 5E-3 Z according to Schaeffler). Then roller race diameter of shaft and bore can be calculated. To select full compl.needle bearings as known from other roller bearing databases, a new database file was created for pin diameters of 1mm until 6mm and pin length of 5.8mm until 39.8mm and 10 until 50 pins, with calculated race diameters, rated load C and C0 and mass. This results in a new database file with 2500 records.

Ø	bearing load Fr = 627	793 N Fa =	0 N ZAR	5 databas	e Full comp	l.needle be	aring			×
E	le <u>V</u> iew <u>H</u> elp							_		
	H -	•	M _	earch :	Search <u>N</u> ext	256 /258	з ОК	Cancel		
Γ	NAME	DFW	DEW	В	DW	Z	С	C0	М	F
	NRB3,5X29,8-Z44	45,631	52,631	29,8	3,5	44	70564	183764	99,029	
	NRB3,5X34,8-Z44	45,631	52,631	34,8	3,5	44	80018	215231	115,645	
	NRB6X17,8-Z27	45,731	57,731	17,8	6	27	61764	108382	106,671	
	NRB4X11,8-Z39	45,772	53,772	11,8	4	39	35001	70699	45,397	
	NRB4X13,8-Z39	45,772	53,772	13,8	4	39	40085	83323	53,091	
	NRB4X15,8-Z39	45,772	53,772	15,8	4	39	44989	95948	60,786	
	NRB4X17,8-Z39	45,772	53,772	17,8	4	39	49746	108573	68,48	
	NRB4X19,8-Z39	45,772	53,772	19,8	4	39	54375	121197	76,174	
	NRB4X21,8-Z39	45,772	53,772	21,8	4	39	58895	133822	83,869	
	NRB4X23,8-Z39	45,772	53,772	23,8	4	39	63317	146447	91,563	
Γ	NRB4X25,8-Z39	45,772	53,772	25,8	4	39	67653	159072	99,258	
	NRB4X27,8-Z39	45,772	53,772	27,8	4	39	71911	171696	106,952	
	NRB4X29,8-Z39	45,772	53,772	29,8	4	39	76098	184321	114,646	
Ŀ									Þ	

Windows 10 – Automatic Updates

Some customers got a key code error after Windows 10 automatic update. The reason is, that sometimes Windows 10 update modifies partitions of the hard disk, so that after update the size of the hard disk shrinks by 0.5 GB. I do not know what Microsoft makes with the hidden partition. Anyway, you have to delete *.cod files in the HEXAGON program folders, then run programs and send key code requests to get new key codes.

Tip: Where to install HEXAGON-Software

If your computer has more than one hard disks or logical drives, better install HEXAGON software on another drive besides Windows system drive, if your operating system is Windows 10. If your PC has a small and fast SSD and a large, slower hard disk, install HEXAGON software on the (slow) hard disk, if Windows 10 runs on the SSD. If you want to accelerate HEXAGON software by means of your SSD, then configure a folder on the SSD as temporary drive (at "File\Settings\Directories").

encored notifinely integeo(pid) constanti	·····	
Temporary directory	c:\temp	<
E Di	LANADONT Diversion	

Tip: Network version: Set "copy DBF -> TEMP"

FED1+ Configuration	
Directories Graphics CAD Colour Printer Printout Settings external Drawing	1
Directories	
Copy DBF → TEMP User: Fritz	

This new option copies all dbf files at program start into the temp folder. This accelerates program speed enormously and reduces network traffic, if temp directory is a local drive. Temporary drive must be as fast as possible (RAM-Disk, SSD or hard disk, but no network drive!)

Tip: Program start by double click into calculation file reports error after update?

HEXAGON software reports a database error since update or change of program path? Probably cfg file with configured directories could not be found. Copy cfg file into "c:\hexagon\", then it should start without error.

HEXAGON PRICELIST 2017-07-01

PRODUCT	EUR
DI1 Version 1.2 O-Ring Seal Software	190,-
DXF-Manager Version 9.0	383
DXFPLOT V 3.2	123
FED1+ V29.6 Helical Compression Springs incl. spring database animation relax 3D	695 -
FED2+ V20.2 Helical Extension Springs incl. spring database animation relaxation	675 -
FED3+ V10.0 Helical Extension Optings incl. spring database, animation, relaxation,	480 -
EED4 Version 7.2 Dick Springs	400,-
FED4 Version 1.5 Disk Springs	430,-
FEDs Version 15.7 Conical Compression Springs	741,-
FED6 Version 16.3 Nonlinear Cylindrical Compression Springs	634,-
FED7 Version 13.2 Nonlinear Compression Springs	660,-
FED8 Version 6.9 Torsion Bar	317,-
FED9 Version 6.0 Spiral Spring	394,-
FED10 Version 3.5 Leaf Spring (complex)	500,-
FED11 Version 3.3 Spring Lock and Bushing	210,-
FED12 Version 2.4 Elastomere Compression Spring	220,-
FED13 Version 4.0 Wave Spring Washers	228,-
FED14 Version 1.4 Helical Wave Spring	395,-
FED15 Version 1.4 Leaf Spring (simple)	180
FED16 Version 1.1 Constant Force Spring	225
FED17 Version 1.0 Magazine Spring	725 -
GEO1+ V6.1 Cross Section Calculation incl. profile database	294 -
GEO2 V/2 6 Rotation Bodies	194 -
GEO2 V2.0 Notation Bodies	205 -
GEO4 V/4 2 Com Softwara	205,-
CEOF V4.2 Calli Sollwale	200,-
GEOS VI.0 Geneva Drive Mechanism Sontware	210,-
GRT V2.0 Gear construction kit software	185,-
HPGL-Manager Version 9.0	383,-
LG1 V6.4 Roll-Contact Bearings	296,-
LG2 V2.2 Hydrodynamic Plain Journal Bearings	460,-
SR1 V22.3 Bolted Joint Design	640,-
SR1+ V22.3 Bolted Joint Design incl. Flange calculation	750,-
TOL1 V11.8 Tolerance Analysis	506,-
TOL1CON V1.5 Conversion Program for TOL1	281,-
TOL2 Version 3.3 Tolerance Analysis	495,-
TOLPASS V4.1 Library for ISO tolerances	107,-
TR1 V4.0 Girder Calculation	757,-
WL1+ V20.1 Shaft Calculation incl. Roll-contact Bearings	945,-
WN1 Version 11.6 Cylindrical and Conical Press Fits	485,-
WN2 V10.0 Involute Splines to DIN 5480	250,-
WN2+ V10.0 Involute Splines to DIN 5480 and non-standard involute splines	380,-
WN3 V 5.4 Parallel Key Joints to DIN 6885, ANSI B17.1, DIN 6892	245
WN4 V 4.6 Involute Splines to ANSI B 92.1	276
WN5 V 4.6 Involute Splines to ISO 4156 and ANSI B 92.2 M	255
WN6 V 3 0 Polygon Profiles P3G to DIN 32711	180 -
WN7 V 3 0 Polygon Profiles P4C to DIN 32712	175 -
W/N8 V 2.2 Serration to DIN 5/81	195 -
WN0 V 2.2 Selfation to DIN 3401 W/N0 V 2.2 Selfation to DIN ISO 14	130,-
WN9 V 2.2 Spinle Shars to DIN ISO 14	260
WN10 V 4.1 IIIVOIUle Spilles to DIN 5462	200,-
WINTE V 2.0 Involute Onlines dimensionel graphic measure	240,-
WINKE V 2.0 Involute Splines - dimensions, graphic, measure	375,-
WINKK V 2.0 Serration Splines - dimensions, graphic, measure	230,-
WS11 V 10.02 Material Database	235,-
ZAR1+ V 26.0 Spur and Helical Gears	1115,-
ZAR2 V7.9 Spiral Bevel Gears to Klingelnberg	792,-
ZAR3+ V8.9 Cylindrical Worm Gears	620,-
ZAR4 V5.2 Non-circular Spur Gears	1610,-
ZAR5 V11.5 Planetary Gearings	1355,-
ZAR6 V3.9 Straight/Helical/Spiral Bevel Gears	585,-
ZAR7 V1.4 Plus Planetary Gears	1380,-

ZAR8 V1.4 Ravigneaux Planetary Gears	1950,-
ZARXP V2.1 Involute Profiles - dimensions, graphic, measure	275,-
ZAR1W V1.7 Gear Wheel Dimensions, tolerances, measure	450,-
ZM1.V2.5 Chain Gear Design	326,-

PACKAGES	EUR
HEXAGON Mechanical Engineering Package (TOL1, ZAR1+, ZAR2, ZAR3+, ZAR5, ZAR6, WL1+, WN1, WN2+, WN3, WST1, SR1+, FED1+, FED2+, FED3+, FED4, ZARXP, TOLPASS, LG1, DXFPLOT, GEO1+, TOL2, GEO2, GEO3, ZM1, WN6, WN7, LG2, FED12, FED13, WN8, WN9, WN11, DI1, FED15, WNXE, GR1)	8,500
HEXAGON Mechanical Engineering Base Package (ZAR1+, ZAR3+, ZAR5, ZAR6, WL1+, WN1, WST1, SR1+, FED1,+, FED2+, FED3+)	4.900,-
HEXAGON Spur Gear Package (ZAR1+ and ZAR5)	1,585
HEXAGON Planetary Gear Package (ZAR1+, ZAR5, ZAR7, ZAR8, GR1)	3,600
HEXAGON Involute Spline Package (WN2+, WN4, WN5, WN10, WNXE)	1,200
HEXAGON Graphic Package (DXF-Manager, HPGL-Manager, DXFPLOT)	741
HEXAGON Helical Spring Package (FED1+, FED2+, FED3+, FED5, FED6, FED7)	2,550
HEXAGON Tolerance Package (TOL1, TOL1CON, TOL2, TOLPASS)	945
HEXAGON Complete Package (All Programs of Engineering Package, Graphics Package, Tolerance Package, Helical Spring Package, Planetary Gear Package, TR1, FED8, FED9, FED10, ZAR4, GEO4, WN4, WN5, FED11, WN10, ZAR1W, FED14, WNXK, FED16, FED17, GEO5)	12,900

Quantity Discount for Individual Licenses

Licenses	2	3	4	5	6	7	8	9	>9
Discount %	25%	27.5%	30%	32.5%	35%	37.5%	40%	42.5%	45%

Network Floating License

Licenses	1	2	3	4	5	6	78	911	>11	
Discount/Add.cost	-50%	-20%	0%	10%	15%	20%	25%	30%	35%	
(Negative Discount means additional cost)										

(Negative Discount means additional cost)

Language Version:

- German and English : all Programs
- French: FED1+, FED2+, FED3+, FED4, FED5, FED6, FED7, FED9, FED10, FED13, FED14, FED15, TOL1, TOL2.
- Italiano: FED1+, FED2+, FED3+, FED4, FED5, FED6, FED7, FED9, FED13, FED14, FED17.
- Swedish: FED1+, FED2+, FED3+, FED5, FED6, FED7.
- Portugues: FED1+, FED17
- Spanish: FED1+, FED2+, FED3+, FED17

Updates:

Update prices	EUR
Software Update (software + pdf manual)	40,-
Software Update (software 64-bit Win + pdf manual)	50,-

Update Mechanical Engineering Package: 800 EUR, Update Complete Package: 1000 EUR Maintenance contract for free updates: annual fee: 150 EUR + 40 EUR per program

Hexagon Software Network Licenses

Floating License in the time-sharing manner by integrated license manager Individual licenses may not be installed in a network!

Conditions for delivery and payment

General packaging and postage costs are EUR 60, (EUR 25 inside Europe) Delivery by Email (zip file, manual as pdf files): EUR 0. Conditions of payment: bank transfer in advance with 2% discount, or by credit card (Master, Visa) net.

Key Code

After installation, software has to be released by key code. Key codes will be sent after receipt of payment.

HEXAGON Industriesoftware GmbH

Stiegelstrasse 8	D-73230 K	Circhheim	Tel.+49 70215957	78 Fax +49 7021 59986
Kieler Strasse 1A	D-10115	Berlin	Mühlstr. 13	D-73272 Neidlingen
Mobile: +49 163 7	342509	E-Mail:	info@hexagon.de	Web: http://www.hexagon.de